Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 115399 by EvoneAkashi last updated on 25/Sep/20

The coefficient of the term independent  of x in the expansion of  (((x+1)/(x^(2/3) − x^(1/3) + 1)) − ((x−1)/(x−x^(1/2) )))^(10)   is

$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{term}\:\mathrm{independent} \\ $$$$\mathrm{of}\:{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −\:{x}^{\mathrm{1}/\mathrm{3}} +\:\mathrm{1}}\:−\:\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} }\right)^{\mathrm{10}} \:\:\mathrm{is} \\ $$

Answered by Dwaipayan Shikari last updated on 25/Sep/20

(((x+1)/((x+1))).(x^(1/3) +1)−(((x^(1/2) +1)(x^(1/2) −1))/(x^(1/2) (x^(1/2) −1))))^(10)   =(x^(1/3) +1−1−x^(−(1/2)) )^(10)   =(x^(1/3) −x^(−(1/2)) )^(10) =x^(−5) (x^(5/6) −1)^(10)   T_(r+1) =x^(−5)  (((10)),(r) )x^((5r)/6) (−1)^(10−r)   (x)^((5r)/6) =x^5   r=6  T_(6+1)  Coefficient=(((10!)/(6!4!)))=210

$$\left(\frac{\mathrm{x}+\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)}.\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)−\frac{\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{1}\right)\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{1}\right)}{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{1}\right)}\right)^{\mathrm{10}} \\ $$$$=\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}−\mathrm{1}−\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\mathrm{10}} \\ $$$$=\left(\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\mathrm{10}} =\mathrm{x}^{−\mathrm{5}} \left(\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{6}}} −\mathrm{1}\right)^{\mathrm{10}} \\ $$$$\mathrm{T}_{\mathrm{r}+\mathrm{1}} =\mathrm{x}^{−\mathrm{5}} \begin{pmatrix}{\mathrm{10}}\\{\mathrm{r}}\end{pmatrix}\mathrm{x}^{\frac{\mathrm{5r}}{\mathrm{6}}} \left(−\mathrm{1}\right)^{\mathrm{10}−\mathrm{r}} \\ $$$$\left(\mathrm{x}\right)^{\frac{\mathrm{5r}}{\mathrm{6}}} =\mathrm{x}^{\mathrm{5}} \\ $$$$\mathrm{r}=\mathrm{6} \\ $$$$\mathrm{T}_{\mathrm{6}+\mathrm{1}} \:\mathrm{Coefficient}=\left(\frac{\mathrm{10}!}{\mathrm{6}!\mathrm{4}!}\right)=\mathrm{210} \\ $$

Commented by mr W last updated on 25/Sep/20

what if the question is  (((x+1)/(x^(2/3) − x^(1/3) + 1)) − ((x−1)/(x−x^(1/2) +1)))^(10)

$${what}\:{if}\:{the}\:{question}\:{is} \\ $$$$\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −\:{x}^{\mathrm{1}/\mathrm{3}} +\:\mathrm{1}}\:−\:\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{10}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com