Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115312 by naka3546 last updated on 25/Sep/20

Solve  for  x ∈ R  that  suitable  on  this  inequality :    (√(8−x^2 ))  >  x

$${Solve}\:\:{for}\:\:{x}\:\in\:\mathbb{R}\:\:{that}\:\:{suitable}\:\:{on}\:\:{this} \\ $$ $${inequality}\::\:\:\:\:\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }\:\:>\:\:{x} \\ $$

Commented bybemath last updated on 25/Sep/20

intersection two graph  we get 8−x^2  = x^2  ⇒ 8=2x^2    x = ± 2 ⇒ solution set is  x< 2.

$${intersection}\:{two}\:{graph} \\ $$ $${we}\:{get}\:\mathrm{8}−{x}^{\mathrm{2}} \:=\:{x}^{\mathrm{2}} \:\Rightarrow\:\mathrm{8}=\mathrm{2}{x}^{\mathrm{2}} \\ $$ $$\:{x}\:=\:\pm\:\mathrm{2}\:\Rightarrow\:{solution}\:{set}\:{is}\:\:{x}<\:\mathrm{2}. \\ $$

Commented byMJS_new last updated on 25/Sep/20

you are right, two graphs  but f(x)=(√(8−x^2 )) is defined for −2(√2)≤x≤2(√2)  and f(x)≥0. you are not allowed to square

$$\mathrm{you}\:\mathrm{are}\:\mathrm{right},\:\mathrm{two}\:\mathrm{graphs} \\ $$ $$\mathrm{but}\:{f}\left({x}\right)=\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for}\:−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{2}\sqrt{\mathrm{2}} \\ $$ $$\mathrm{and}\:{f}\left({x}\right)\geqslant\mathrm{0}.\:\mathrm{you}\:\mathrm{are}\:\mathrm{not}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{square} \\ $$

Answered by john santu last updated on 25/Sep/20

(1) 8−x^2 ≥0 ⇒((√8)+x)((√8)−x)≥0  −2(√2) ≤ x ≤ 2(√2)  (2) 8−x^2 >x^2  →4−x^2 >0         (2+x)(2−x)>0         −2<x<2  solution set (1)∩(2)⇒−2<x<2

$$\left(\mathrm{1}\right)\:\mathrm{8}−{x}^{\mathrm{2}} \geqslant\mathrm{0}\:\Rightarrow\left(\sqrt{\mathrm{8}}+{x}\right)\left(\sqrt{\mathrm{8}}−{x}\right)\geqslant\mathrm{0} \\ $$ $$−\mathrm{2}\sqrt{\mathrm{2}}\:\leqslant\:{x}\:\leqslant\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$ $$\left(\mathrm{2}\right)\:\mathrm{8}−{x}^{\mathrm{2}} >{x}^{\mathrm{2}} \:\rightarrow\mathrm{4}−{x}^{\mathrm{2}} >\mathrm{0}\: \\ $$ $$\:\:\:\:\:\:\left(\mathrm{2}+{x}\right)\left(\mathrm{2}−{x}\right)>\mathrm{0}\: \\ $$ $$\:\:\:\:\:\:−\mathrm{2}<{x}<\mathrm{2} \\ $$ $${solution}\:{set}\:\left(\mathrm{1}\right)\cap\left(\mathrm{2}\right)\Rightarrow−\mathrm{2}<{x}<\mathrm{2} \\ $$

Commented bynaka3546 last updated on 25/Sep/20

but  why ?  any  other   solution?  x = −2(√2)  is  right  answer.

$${but}\:\:{why}\:?\:\:{any}\:\:{other}\:\:\:{solution}? \\ $$ $${x}\:=\:−\mathrm{2}\sqrt{\mathrm{2}}\:\:{is}\:\:{right}\:\:{answer}. \\ $$

Commented byMJS_new last updated on 25/Sep/20

(2) is wrong for x<0

$$\left(\mathrm{2}\right)\:\mathrm{is}\:\mathrm{wrong}\:\mathrm{for}\:{x}<\mathrm{0} \\ $$

Answered by MJS_new last updated on 25/Sep/20

(√(8−x^2 ))>x  (√(8−x^2 )) defined for −2(√2)≤x≤2(√2)  (√(8−x^2 ))≥0 ⇒ −2(√2)≤x≤0 is a part of the       solution  for x>0 we are allowed to square  8−x^2 >x^2 ∧x>0  ⇒ 0<x<2    ⇒ solution is −2(√2)≤x<2

$$\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }>{x} \\ $$ $$\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }\:\mathrm{defined}\:\mathrm{for}\:−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{2}\sqrt{\mathrm{2}} \\ $$ $$\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }\geqslant\mathrm{0}\:\Rightarrow\:−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the} \\ $$ $$\:\:\:\:\:\mathrm{solution} \\ $$ $$\mathrm{for}\:{x}>\mathrm{0}\:\mathrm{we}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{square} \\ $$ $$\mathrm{8}−{x}^{\mathrm{2}} >{x}^{\mathrm{2}} \wedge{x}>\mathrm{0} \\ $$ $$\Rightarrow\:\mathrm{0}<{x}<\mathrm{2} \\ $$ $$ \\ $$ $$\Rightarrow\:\mathrm{solution}\:\mathrm{is}\:−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}<\mathrm{2} \\ $$

Answered by mr W last updated on 25/Sep/20

8−x^2 ≥0  ⇒−2(√2)≤x≤2(√2)  for −2(√2)≤x≤0:  (√(8−x^2 ))>x is always true.  for 0<x≤2(√2):  8−x^2 >x^2   ⇒x<2    answer:  −2(√2)≤x<2

$$\mathrm{8}−{x}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$ $$\Rightarrow−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{2}\sqrt{\mathrm{2}} \\ $$ $${for}\:−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}\leqslant\mathrm{0}: \\ $$ $$\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }>{x}\:{is}\:{always}\:{true}. \\ $$ $${for}\:\mathrm{0}<{x}\leqslant\mathrm{2}\sqrt{\mathrm{2}}: \\ $$ $$\mathrm{8}−{x}^{\mathrm{2}} >{x}^{\mathrm{2}} \\ $$ $$\Rightarrow{x}<\mathrm{2} \\ $$ $$ \\ $$ $${answer}: \\ $$ $$−\mathrm{2}\sqrt{\mathrm{2}}\leqslant{x}<\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com