Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 115258 by bobhans last updated on 24/Sep/20

A vector of magnitude 2 along a bisector  of the angle between the two vectors  2i^� −2j^� +k^�  and i^� +2j^� −2k^�  is __

$${A}\:{vector}\:{of}\:{magnitude}\:\mathrm{2}\:{along}\:{a}\:{bisector} \\ $$$${of}\:{the}\:{angle}\:{between}\:{the}\:{two}\:{vectors} \\ $$$$\mathrm{2}\hat {{i}}−\mathrm{2}\hat {{j}}+\hat {{k}}\:{and}\:\hat {{i}}+\mathrm{2}\hat {{j}}−\mathrm{2}\hat {{k}}\:{is}\:\_\_ \\ $$

Answered by bemath last updated on 24/Sep/20

let a^→ =(2,−2,1) & b^→ =(1,2,−2)  ⇒vector along bisector is given  by (a^→ /(∣a^→ ∣)) ± (b^→ /(∣b^→ ∣)) = (((2,−2,1))/3) ± (((1,2,−2))/3)  = (1,0,−(1/3)) or ((1/3),−(4/3),1)  Required vector are   (i) 2.(((1,0,−(1/3)))/( (√(1+(1/9))))) = (((6,0,−2))/( (√(10))))  (ii) 2.((((1/3),−(4/3),1))/( (√((26)/9)))) = (((2,−8,6))/( (√(26))))

$${let}\:\overset{\rightarrow} {{a}}=\left(\mathrm{2},−\mathrm{2},\mathrm{1}\right)\:\&\:\overset{\rightarrow} {{b}}=\left(\mathrm{1},\mathrm{2},−\mathrm{2}\right) \\ $$$$\Rightarrow{vector}\:{along}\:{bisector}\:{is}\:{given} \\ $$$${by}\:\frac{\overset{\rightarrow} {{a}}}{\mid\overset{\rightarrow} {{a}}\mid}\:\pm\:\frac{\overset{\rightarrow} {{b}}}{\mid\overset{\rightarrow} {{b}}\mid}\:=\:\frac{\left(\mathrm{2},−\mathrm{2},\mathrm{1}\right)}{\mathrm{3}}\:\pm\:\frac{\left(\mathrm{1},\mathrm{2},−\mathrm{2}\right)}{\mathrm{3}} \\ $$$$=\:\left(\mathrm{1},\mathrm{0},−\frac{\mathrm{1}}{\mathrm{3}}\right)\:{or}\:\left(\frac{\mathrm{1}}{\mathrm{3}},−\frac{\mathrm{4}}{\mathrm{3}},\mathrm{1}\right) \\ $$$${Required}\:{vector}\:{are}\: \\ $$$$\left({i}\right)\:\mathrm{2}.\frac{\left(\mathrm{1},\mathrm{0},−\frac{\mathrm{1}}{\mathrm{3}}\right)}{\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{9}}}}\:=\:\frac{\left(\mathrm{6},\mathrm{0},−\mathrm{2}\right)}{\:\sqrt{\mathrm{10}}} \\ $$$$\left({ii}\right)\:\mathrm{2}.\frac{\left(\frac{\mathrm{1}}{\mathrm{3}},−\frac{\mathrm{4}}{\mathrm{3}},\mathrm{1}\right)}{\:\sqrt{\frac{\mathrm{26}}{\mathrm{9}}}}\:=\:\frac{\left(\mathrm{2},−\mathrm{8},\mathrm{6}\right)}{\:\sqrt{\mathrm{26}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com