Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115027 by bemath last updated on 23/Sep/20

If lim_(x→3)  ((17 ((ax+3))^(1/(3 ))  +b)/(x−3)) = ((136)/(27))  then 8a+b = ?

$$\mathrm{If}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{17}\:\sqrt[{\mathrm{3}\:}]{\mathrm{ax}+\mathrm{3}}\:+\mathrm{b}}{\mathrm{x}−\mathrm{3}}\:=\:\frac{\mathrm{136}}{\mathrm{27}} \\ $$$$\mathrm{then}\:\mathrm{8a}+\mathrm{b}\:=\:? \\ $$

Answered by bobhans last updated on 23/Sep/20

limit form (0/0). numerator must be = 0  (1) 17 ((3a+3))^(1/(3 ))  +b =0;  b ⇒−17 ((3a+3))^(1/(3 ))   (2) lim_(x→3)  ((17 ((ax+3))^(1/3)  −17 ((3a+3))^(1/(3 )) )/(x−3)) =((136)/(27))         lim_(x→3)  ((((ax+3))^(1/(3 ))  −((3a+3))^(1/(3 )) )/(x−3)) = (8/(27))  set x=3+r ; r→0      lim_(r→0)  ((((ar+3a+3))^(1/(3 ))  −((3a+3))^(1/(3 )) )/r) = (8/(27))  remember (p)^(1/3)  −(q)^(1/(3 ))  = ((p−q)/( (p^2 )^(1/(3 )) +((pq))^(1/(3 ))  +(q^2 )^(1/(3 )) ))   lim_(r→0)  (((ar+3a+3)−(3a+3))/(r ((((ar+3a+3)^2 ))^(1/(3 )) +(((3a+3)(ar+3a+3)))^(1/(3 )) +(((3a+3)^2 ))^(1/(3 )) )) =(8/(27))  lim_(r→0)  ((ar)/(r((((ar+3a+3)^2 ))^(1/(3 )) +(((ar+3a+3)(3a+3)))^(1/(3 )) +(((3a+3)^2 ))^(1/(3 )) )))=(8/(27))  ⇔ (a/(3 (((3a+3)^2 ))^(1/(3 )) )) = (8/(27)) ;  by inspection we get a = 8 , check (8/(3 (((24+3))^(1/(3 )) )^2 ))  = (8/(3×9)) = (8/(27)). Then b = −17 ((24+3))^(1/3)  =−51  ∴ 8a+b = 64−51=13

$${limit}\:{form}\:\frac{\mathrm{0}}{\mathrm{0}}.\:{numerator}\:{must}\:{be}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{17}\:\sqrt[{\mathrm{3}\:}]{\mathrm{3}{a}+\mathrm{3}}\:+{b}\:=\mathrm{0};\:\:{b}\:\Rightarrow−\mathrm{17}\:\sqrt[{\mathrm{3}\:}]{\mathrm{3}{a}+\mathrm{3}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{17}\:\sqrt[{\mathrm{3}}]{{ax}+\mathrm{3}}\:−\mathrm{17}\:\sqrt[{\mathrm{3}\:}]{\mathrm{3}{a}+\mathrm{3}}}{{x}−\mathrm{3}}\:=\frac{\mathrm{136}}{\mathrm{27}} \\ $$$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{{ax}+\mathrm{3}}\:−\sqrt[{\mathrm{3}\:}]{\mathrm{3}{a}+\mathrm{3}}}{{x}−\mathrm{3}}\:=\:\frac{\mathrm{8}}{\mathrm{27}} \\ $$$${set}\:{x}=\mathrm{3}+{r}\:;\:{r}\rightarrow\mathrm{0} \\ $$$$\:\:\:\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{{ar}+\mathrm{3}{a}+\mathrm{3}}\:−\sqrt[{\mathrm{3}\:}]{\mathrm{3}{a}+\mathrm{3}}}{{r}}\:=\:\frac{\mathrm{8}}{\mathrm{27}} \\ $$$${remember}\:\sqrt[{\mathrm{3}}]{{p}}\:−\sqrt[{\mathrm{3}\:}]{{q}}\:=\:\frac{{p}−{q}}{\:\sqrt[{\mathrm{3}\:}]{{p}^{\mathrm{2}} }+\sqrt[{\mathrm{3}\:}]{{pq}}\:+\sqrt[{\mathrm{3}\:}]{{q}^{\mathrm{2}} }} \\ $$$$\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({ar}+\mathrm{3}{a}+\mathrm{3}\right)−\left(\mathrm{3}{a}+\mathrm{3}\right)}{{r}\:\left(\sqrt[{\mathrm{3}\:}]{\left({ar}+\mathrm{3}{a}+\mathrm{3}\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}\:}]{\left(\mathrm{3}{a}+\mathrm{3}\right)\left({ar}+\mathrm{3}{a}+\mathrm{3}\right)}+\sqrt[{\mathrm{3}\:}]{\left(\mathrm{3}{a}+\mathrm{3}\right)^{\mathrm{2}} }\right.}\:=\frac{\mathrm{8}}{\mathrm{27}} \\ $$$$\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ar}}{{r}\left(\sqrt[{\mathrm{3}\:}]{\left({ar}+\mathrm{3}{a}+\mathrm{3}\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}\:}]{\left({ar}+\mathrm{3}{a}+\mathrm{3}\right)\left(\mathrm{3}{a}+\mathrm{3}\right)}+\sqrt[{\mathrm{3}\:}]{\left(\mathrm{3}{a}+\mathrm{3}\right)^{\mathrm{2}} }\right)}=\frac{\mathrm{8}}{\mathrm{27}} \\ $$$$\Leftrightarrow\:\frac{{a}}{\mathrm{3}\:\sqrt[{\mathrm{3}\:}]{\left(\mathrm{3}{a}+\mathrm{3}\right)^{\mathrm{2}} }}\:=\:\frac{\mathrm{8}}{\mathrm{27}}\:; \\ $$$${by}\:{inspection}\:{we}\:{get}\:{a}\:=\:\mathrm{8}\:,\:{check}\:\frac{\mathrm{8}}{\mathrm{3}\:\left(\sqrt[{\mathrm{3}\:}]{\mathrm{24}+\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{8}}{\mathrm{3}×\mathrm{9}}\:=\:\frac{\mathrm{8}}{\mathrm{27}}.\:{Then}\:{b}\:=\:−\mathrm{17}\:\sqrt[{\mathrm{3}}]{\mathrm{24}+\mathrm{3}}\:=−\mathrm{51} \\ $$$$\therefore\:\mathrm{8}{a}+{b}\:=\:\mathrm{64}−\mathrm{51}=\mathrm{13} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com