Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115000 by mnjuly1970 last updated on 22/Sep/20

            ....nice   math...     if  y =(cos(2x))^(−(1/2))  then  prove ::   y+y^(′′) = 3y^5                  ...m.n.july.1970...

$$\:\:\:\:\:\:\:\:\:\:\:\:....{nice}\:\:\:{math}... \\ $$$$ \\ $$$$\:{if}\:\:{y}\:=\left({cos}\left(\mathrm{2}{x}\right)\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{then} \\ $$$${prove}\:::\:\:\:{y}+{y}^{''} =\:\mathrm{3}{y}^{\mathrm{5}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$

Answered by Dwaipayan Shikari last updated on 22/Sep/20

y=(1/( (√(cos2x))))  y′=cos^(−(3/2)) 2x.sin2x  y′′=3cos^(−(5/2)) 2x.sin^2 2x+2cos^(−(1/2)) 2x  y+y′′=3(cos^(−(5/2)) 2x(1−cos^2 2x)+cos^(−(1/2)) 2x)  y+y′′=3cos^(−(5/2)) 2x−3cos^(−(1/2)) 2x+3cos^(−(1/2)) 2x  y+y′′=3y^5

$${y}=\frac{\mathrm{1}}{\:\sqrt{{cos}\mathrm{2}{x}}} \\ $$$${y}'={cos}^{−\frac{\mathrm{3}}{\mathrm{2}}} \mathrm{2}{x}.{sin}\mathrm{2}{x} \\ $$$${y}''=\mathrm{3}{cos}^{−\frac{\mathrm{5}}{\mathrm{2}}} \mathrm{2}{x}.{sin}^{\mathrm{2}} \mathrm{2}{x}+\mathrm{2}{cos}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{2}{x} \\ $$$${y}+{y}''=\mathrm{3}\left({cos}^{−\frac{\mathrm{5}}{\mathrm{2}}} \mathrm{2}{x}\left(\mathrm{1}−{cos}^{\mathrm{2}} \mathrm{2}{x}\right)+{cos}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{2}{x}\right) \\ $$$${y}+{y}''=\mathrm{3}{cos}^{−\frac{\mathrm{5}}{\mathrm{2}}} \mathrm{2}{x}−\mathrm{3}{cos}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{2}{x}+\mathrm{3}{cos}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{2}{x} \\ $$$${y}+{y}''=\mathrm{3}{y}^{\mathrm{5}} \\ $$

Commented by mnjuly1970 last updated on 22/Sep/20

very nice very nice ...thank  you sir...

$${very}\:{nice}\:{very}\:{nice}\:...{thank} \\ $$$${you}\:{sir}... \\ $$

Commented by Canovas last updated on 29/Sep/20

Correct

$${Correct} \\ $$

Answered by $@y@m last updated on 23/Sep/20

y=(1/( (√(cos 2x))))     y^2 =sec2 x ...(1)  2yy′=2sec2xtan 2x  yy′=sec2xtan 2x  yy′=y^2 tan2 x  y′=ytan 2x ...(2)  y′′=2ysec^2 2x+tan2 x.y′  y′′=2y.y^4 +tan 2x.ytan 2x  {using(1) &(2)  y′′=2y^5 +ytan^2 2x  y′′=2y^5 +y(sec^2 2x−1)  y′′=2y^5 +y(y^4 −1)  y+y′′=3y^5

$${y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}\:\:\: \\ $$$${y}^{\mathrm{2}} =\mathrm{sec2}\:{x}\:...\left(\mathrm{1}\right) \\ $$$$\mathrm{2}{yy}'=\mathrm{2sec2}{x}\mathrm{tan}\:\mathrm{2}{x} \\ $$$${yy}'=\mathrm{sec2}{x}\mathrm{tan}\:\mathrm{2}{x} \\ $$$${yy}'={y}^{\mathrm{2}} \mathrm{tan2}\:{x} \\ $$$${y}'={y}\mathrm{tan}\:\mathrm{2}{x}\:...\left(\mathrm{2}\right) \\ $$$${y}''=\mathrm{2}{y}\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{tan2}\:{x}.{y}' \\ $$$${y}''=\mathrm{2}{y}.{y}^{\mathrm{4}} +\mathrm{tan}\:\mathrm{2}{x}.{y}\mathrm{tan}\:\mathrm{2}{x}\:\:\left\{{using}\left(\mathrm{1}\right)\:\&\left(\mathrm{2}\right)\right. \\ $$$${y}''=\mathrm{2}{y}^{\mathrm{5}} +{y}\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x} \\ $$$${y}''=\mathrm{2}{y}^{\mathrm{5}} +{y}\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}{x}−\mathrm{1}\right) \\ $$$${y}''=\mathrm{2}{y}^{\mathrm{5}} +{y}\left({y}^{\mathrm{4}} −\mathrm{1}\right) \\ $$$${y}+{y}''=\mathrm{3}{y}^{\mathrm{5}} \\ $$

Commented by mnjuly1970 last updated on 23/Sep/20

very nice awesom solution

$${very}\:{nice}\:{awesom}\:{solution} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com