Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114965 by joki last updated on 22/Sep/20

find all irational numbers x such that x  2+20x+20 and x^(3 ) −2020x+1   both is a  rasional number.

$${find}\:{all}\:{irational}\:{numbers}\:{x}\:{such}\:{that}\:{x} \\ $$$$\mathrm{2}+\mathrm{20}{x}+\mathrm{20}\:{and}\:{x}^{\mathrm{3}\:} −\mathrm{2020}{x}+\mathrm{1}\:\:\:{both}\:{is}\:{a} \\ $$$${rasional}\:{number}. \\ $$

Answered by MJS_new last updated on 22/Sep/20

(1) x^2 +20x+20∈Q  (2) x^3 −2020x+1∈Q    x=a±(√b); a, b ∈Q; b∉Q    (1)  ±2(a+10)(√b)+a^2 +20a+b+20∈Q  ⇔  2(a+10)(√b)∈Q    (2)  ±(3a^2 +b−2020)(√b)+a^3 +3ab−2020a+1∈Q  ⇔  (3a^2 +b−2020)(√b)∈Q    now we have  (1) 2(a+10)(√b)∈Q  (2) (3a^2 +b−2020)(√b)∈Q  ⇒  either b=0 but then x is not irrational  or a+10=0∧3a^2 +b−2020=0  ⇒ a=−10∧b=1720  ⇒ x=−10±2(√(430))

$$\left(\mathrm{1}\right)\:{x}^{\mathrm{2}} +\mathrm{20}{x}+\mathrm{20}\in\mathbb{Q} \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{3}} −\mathrm{2020}{x}+\mathrm{1}\in\mathbb{Q} \\ $$$$ \\ $$$${x}={a}\pm\sqrt{{b}};\:{a},\:{b}\:\in\mathbb{Q};\:{b}\notin\mathbb{Q} \\ $$$$ \\ $$$$\left(\mathrm{1}\right) \\ $$$$\pm\mathrm{2}\left({a}+\mathrm{10}\right)\sqrt{{b}}+{a}^{\mathrm{2}} +\mathrm{20}{a}+{b}+\mathrm{20}\in\mathbb{Q} \\ $$$$\Leftrightarrow \\ $$$$\mathrm{2}\left({a}+\mathrm{10}\right)\sqrt{{b}}\in\mathbb{Q} \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$$\pm\left(\mathrm{3}{a}^{\mathrm{2}} +{b}−\mathrm{2020}\right)\sqrt{{b}}+{a}^{\mathrm{3}} +\mathrm{3}{ab}−\mathrm{2020}{a}+\mathrm{1}\in\mathbb{Q} \\ $$$$\Leftrightarrow \\ $$$$\left(\mathrm{3}{a}^{\mathrm{2}} +{b}−\mathrm{2020}\right)\sqrt{{b}}\in\mathbb{Q} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}\left({a}+\mathrm{10}\right)\sqrt{{b}}\in\mathbb{Q} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{3}{a}^{\mathrm{2}} +{b}−\mathrm{2020}\right)\sqrt{{b}}\in\mathbb{Q} \\ $$$$\Rightarrow \\ $$$$\mathrm{either}\:{b}=\mathrm{0}\:\mathrm{but}\:\mathrm{then}\:{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{irrational} \\ $$$$\mathrm{or}\:{a}+\mathrm{10}=\mathrm{0}\wedge\mathrm{3}{a}^{\mathrm{2}} +{b}−\mathrm{2020}=\mathrm{0} \\ $$$$\Rightarrow\:{a}=−\mathrm{10}\wedge{b}=\mathrm{1720} \\ $$$$\Rightarrow\:{x}=−\mathrm{10}\pm\mathrm{2}\sqrt{\mathrm{430}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com