Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 114809 by bemath last updated on 21/Sep/20

 { ((1−((12)/(y+3x))=(2/( (√x))))),((1+((12)/(y+3x))=(6/( (√y))))) :}

$$\begin{cases}{\mathrm{1}−\frac{\mathrm{12}}{{y}+\mathrm{3}{x}}=\frac{\mathrm{2}}{\:\sqrt{{x}}}}\\{\mathrm{1}+\frac{\mathrm{12}}{{y}+\mathrm{3}{x}}=\frac{\mathrm{6}}{\:\sqrt{{y}}}}\end{cases} \\ $$

Commented by bemath last updated on 21/Sep/20

set (√x) = u ∧ (√y) = v  ⇔ ((12)/(y+3x)) = ((12)/(y+3x)) ⇒1−(2/u)=(6/v)−1  ⇒ 1 = (1/u)+(3/v); 3u+v = uv  ⇔1−(2/u) = ((12)/(v^2 +3u^2 ))   ⇒ ((u−2)/u) = ((12)/(v^2 +3u^2 ))  ⇒12u = (u−2)(3u^2 +v^2 )  ⇒12u = 3u^3 +uv.v−6u^2 −2v^2   ⇒12u=3u^3 +v(3u+v)−6u^2 −2v^2   ⇒12u=3u^3 +3uv−6u^2 −v^2   ⇒12u=3u^3 +3(3u+v)−6u^2 −v^2   ⇒12u=3u^3 +9u+3v−6u^2 −v^2   ⇔3u^3 −6u^2 −3u+3v−v^2 =0  ⇒3u(u^2 −2u−1)+3v−v^2 =0

$${set}\:\sqrt{{x}}\:=\:{u}\:\wedge\:\sqrt{{y}}\:=\:{v} \\ $$$$\Leftrightarrow\:\frac{\mathrm{12}}{{y}+\mathrm{3}{x}}\:=\:\frac{\mathrm{12}}{{y}+\mathrm{3}{x}}\:\Rightarrow\mathrm{1}−\frac{\mathrm{2}}{{u}}=\frac{\mathrm{6}}{{v}}−\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{1}\:=\:\frac{\mathrm{1}}{{u}}+\frac{\mathrm{3}}{{v}};\:\mathrm{3}{u}+{v}\:=\:{uv} \\ $$$$\Leftrightarrow\mathrm{1}−\frac{\mathrm{2}}{{u}}\:=\:\frac{\mathrm{12}}{{v}^{\mathrm{2}} +\mathrm{3}{u}^{\mathrm{2}} }\: \\ $$$$\Rightarrow\:\frac{{u}−\mathrm{2}}{{u}}\:=\:\frac{\mathrm{12}}{{v}^{\mathrm{2}} +\mathrm{3}{u}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{12}{u}\:=\:\left({u}−\mathrm{2}\right)\left(\mathrm{3}{u}^{\mathrm{2}} +{v}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{12}{u}\:=\:\mathrm{3}{u}^{\mathrm{3}} +{uv}.{v}−\mathrm{6}{u}^{\mathrm{2}} −\mathrm{2}{v}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{12}{u}=\mathrm{3}{u}^{\mathrm{3}} +{v}\left(\mathrm{3}{u}+{v}\right)−\mathrm{6}{u}^{\mathrm{2}} −\mathrm{2}{v}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{12}{u}=\mathrm{3}{u}^{\mathrm{3}} +\mathrm{3}{uv}−\mathrm{6}{u}^{\mathrm{2}} −{v}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{12}{u}=\mathrm{3}{u}^{\mathrm{3}} +\mathrm{3}\left(\mathrm{3}{u}+{v}\right)−\mathrm{6}{u}^{\mathrm{2}} −{v}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{12}{u}=\mathrm{3}{u}^{\mathrm{3}} +\mathrm{9}{u}+\mathrm{3}{v}−\mathrm{6}{u}^{\mathrm{2}} −{v}^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{3}{u}^{\mathrm{3}} −\mathrm{6}{u}^{\mathrm{2}} −\mathrm{3}{u}+\mathrm{3}{v}−{v}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{u}\left({u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}\right)+\mathrm{3}{v}−{v}^{\mathrm{2}} =\mathrm{0} \\ $$

Answered by MJS_new last updated on 21/Sep/20

let x=p^2 ∧y=q^2 p^2  with p,q >0  ⇒  { ((1−((12)/(p^2 q^2 +3p^2 ))=(2/p))),((1+((12)/(p^2 q^2 +3p^2 ))=(6/(pq)))) :}  ⇒  { (((q^2 +3)p^2 −2(q^2 +3)p−12=0)),((q(q^2 +3)p^2 −6(q^2 +3)p+12q=0)) :}  (2)−q×(1)  2(q−3)(q^2 +3)p+24q=0  p=−((12q)/((q−3)(q^2 +3)))  insert into (1) [or (2)] and transform [q>0]  ⇒ q^4 +6q^2 −27=0  ⇒ q=(√3) ⇒ p=1+(√3)  ⇒ x=4+2(√3)∧y=12+6(√3)

$$\mathrm{let}\:{x}={p}^{\mathrm{2}} \wedge{y}={q}^{\mathrm{2}} {p}^{\mathrm{2}} \:\mathrm{with}\:{p},{q}\:>\mathrm{0} \\ $$$$\Rightarrow\:\begin{cases}{\mathrm{1}−\frac{\mathrm{12}}{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{3}{p}^{\mathrm{2}} }=\frac{\mathrm{2}}{{p}}}\\{\mathrm{1}+\frac{\mathrm{12}}{{p}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{3}{p}^{\mathrm{2}} }=\frac{\mathrm{6}}{{pq}}}\end{cases} \\ $$$$\Rightarrow\:\begin{cases}{\left({q}^{\mathrm{2}} +\mathrm{3}\right){p}^{\mathrm{2}} −\mathrm{2}\left({q}^{\mathrm{2}} +\mathrm{3}\right){p}−\mathrm{12}=\mathrm{0}}\\{{q}\left({q}^{\mathrm{2}} +\mathrm{3}\right){p}^{\mathrm{2}} −\mathrm{6}\left({q}^{\mathrm{2}} +\mathrm{3}\right){p}+\mathrm{12}{q}=\mathrm{0}}\end{cases} \\ $$$$\left(\mathrm{2}\right)−{q}×\left(\mathrm{1}\right) \\ $$$$\mathrm{2}\left({q}−\mathrm{3}\right)\left({q}^{\mathrm{2}} +\mathrm{3}\right){p}+\mathrm{24}{q}=\mathrm{0} \\ $$$${p}=−\frac{\mathrm{12}{q}}{\left({q}−\mathrm{3}\right)\left({q}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$$$\mathrm{insert}\:\mathrm{into}\:\left(\mathrm{1}\right)\:\left[\mathrm{or}\:\left(\mathrm{2}\right)\right]\:\mathrm{and}\:\mathrm{transform}\:\left[{q}>\mathrm{0}\right] \\ $$$$\Rightarrow\:{q}^{\mathrm{4}} +\mathrm{6}{q}^{\mathrm{2}} −\mathrm{27}=\mathrm{0} \\ $$$$\Rightarrow\:{q}=\sqrt{\mathrm{3}}\:\Rightarrow\:{p}=\mathrm{1}+\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\:{x}=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}\wedge{y}=\mathrm{12}+\mathrm{6}\sqrt{\mathrm{3}} \\ $$

Commented by bemath last updated on 21/Sep/20

why sir y = p^2 q^2  ? i used y = q^2   but i don′t solve it

$${why}\:{sir}\:{y}\:=\:{p}^{\mathrm{2}} {q}^{\mathrm{2}} \:?\:{i}\:{used}\:{y}\:=\:{q}^{\mathrm{2}} \\ $$$${but}\:{i}\:{don}'{t}\:{solve}\:{it} \\ $$

Commented by MJS_new last updated on 21/Sep/20

because both x, y >0 ⇒ y=qx

$$\mathrm{because}\:\mathrm{both}\:{x},\:{y}\:>\mathrm{0}\:\Rightarrow\:{y}={qx} \\ $$

Commented by bemath last updated on 21/Sep/20

gave kudos sir.

$${gave}\:{kudos}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com