Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114807 by Eric002 last updated on 21/Sep/20

is zero a natural number 0∈N?

$${is}\:{zero}\:{a}\:{natural}\:{number}\:\mathrm{0}\in\mathbb{N}? \\ $$

Commented by MJS_new last updated on 21/Sep/20

there seem to be two different definitions  of N, both are in use... confusion...  old definition N={1, 2, 3, ...}; N∪{0}=N_0   new definition N={0, 1, 2, ...}; N\{0}=N^★   so the answer depends on in which country  and on which school you are    when I was in school (a zillion years ago) we  leaned these things one after the other:  (1) N: as you count (nobody would start to       count by 0).  (1.1) addition is always possible in N  (1.2) multiplication is always possible in N       but n×1=n  (1.3) substraction only as a test of addition       a+b=c ⇒ c−b=a∧c−a=b  (1.4) substraction a−b possible only if a>b?  ⇒  (2) Z=N∪{...−2, −1, 0} these are magical       numbers we need to substract without limits       a−b=x always solveable in Z  (2.1) 0 neutral element of addition  (2.2) 1 neutral element of multiplication    then Q (a÷b=x solveable), then R (all non−  periodic numbers like (√2), π; later e...),  finally C

$$\mathrm{there}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{be}\:\mathrm{two}\:\mathrm{different}\:\mathrm{definitions} \\ $$$$\mathrm{of}\:\mathbb{N},\:\mathrm{both}\:\mathrm{are}\:\mathrm{in}\:\mathrm{use}...\:\mathrm{confusion}... \\ $$$$\mathrm{old}\:\mathrm{definition}\:\mathbb{N}=\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:...\right\};\:\mathbb{N}\cup\left\{\mathrm{0}\right\}=\mathbb{N}_{\mathrm{0}} \\ $$$$\mathrm{new}\:\mathrm{definition}\:\mathbb{N}=\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:...\right\};\:\mathbb{N}\backslash\left\{\mathrm{0}\right\}=\mathbb{N}^{\bigstar} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{depends}\:\mathrm{on}\:\mathrm{in}\:\mathrm{which}\:\mathrm{country} \\ $$$$\mathrm{and}\:\mathrm{on}\:\mathrm{which}\:\mathrm{school}\:\mathrm{you}\:\mathrm{are} \\ $$$$ \\ $$$$\mathrm{when}\:\mathrm{I}\:\mathrm{was}\:\mathrm{in}\:\mathrm{school}\:\left(\mathrm{a}\:\mathrm{zillion}\:\mathrm{years}\:\mathrm{ago}\right)\:\mathrm{we} \\ $$$$\mathrm{leaned}\:\mathrm{these}\:\mathrm{things}\:\mathrm{one}\:\mathrm{after}\:\mathrm{the}\:\mathrm{other}: \\ $$$$\left(\mathrm{1}\right)\:\mathbb{N}:\:{as}\:{you}\:{count}\:\left(\mathrm{nobody}\:\mathrm{would}\:\mathrm{start}\:\mathrm{to}\right. \\ $$$$\left.\:\:\:\:\:\mathrm{count}\:\mathrm{by}\:\mathrm{0}\right). \\ $$$$\left(\mathrm{1}.\mathrm{1}\right)\:\mathrm{addition}\:\mathrm{is}\:\mathrm{always}\:\mathrm{possible}\:\mathrm{in}\:\mathbb{N} \\ $$$$\left(\mathrm{1}.\mathrm{2}\right)\:\mathrm{multiplication}\:\mathrm{is}\:\mathrm{always}\:\mathrm{possible}\:\mathrm{in}\:\mathbb{N} \\ $$$$\:\:\:\:\:\mathrm{but}\:{n}×\mathrm{1}={n} \\ $$$$\left(\mathrm{1}.\mathrm{3}\right)\:\mathrm{substraction}\:\mathrm{only}\:\mathrm{as}\:\mathrm{a}\:\mathrm{test}\:\mathrm{of}\:\mathrm{addition} \\ $$$$\:\:\:\:\:{a}+{b}={c}\:\Rightarrow\:{c}−{b}={a}\wedge{c}−{a}={b} \\ $$$$\left(\mathrm{1}.\mathrm{4}\right)\:\mathrm{substraction}\:{a}−{b}\:\mathrm{possible}\:\mathrm{only}\:\mathrm{if}\:{a}>{b}? \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{2}\right)\:\mathbb{Z}=\mathbb{N}\cup\left\{...−\mathrm{2},\:−\mathrm{1},\:\mathrm{0}\right\}\:\mathrm{these}\:\mathrm{are}\:\mathrm{magical} \\ $$$$\:\:\:\:\:\mathrm{numbers}\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{substract}\:\mathrm{without}\:\mathrm{limits} \\ $$$$\:\:\:\:\:{a}−{b}={x}\:\mathrm{always}\:\mathrm{solveable}\:\mathrm{in}\:\mathbb{Z} \\ $$$$\left(\mathrm{2}.\mathrm{1}\right)\:\mathrm{0}\:{neutral}\:{element}\:{of}\:{addition} \\ $$$$\left(\mathrm{2}.\mathrm{2}\right)\:\mathrm{1}\:{neutral}\:{element}\:{of}\:{multiplication} \\ $$$$ \\ $$$$\mathrm{then}\:\mathbb{Q}\:\left({a}\boldsymbol{\div}{b}={x}\:\mathrm{solveable}\right),\:\mathrm{then}\:\mathbb{R}\:\left(\mathrm{all}\:\mathrm{non}−\right. \\ $$$$\left.\mathrm{periodic}\:\mathrm{numbers}\:\mathrm{like}\:\sqrt{\mathrm{2}},\:\pi;\:\mathrm{later}\:\mathrm{e}...\right), \\ $$$$\mathrm{finally}\:\mathbb{C} \\ $$

Commented by Eric002 last updated on 21/Sep/20

thank you for explaning but what is the  difference between N and N^∗

$${thank}\:{you}\:{for}\:{explaning}\:{but}\:{what}\:{is}\:{the} \\ $$$${difference}\:{between}\:{N}\:{and}\:{N}^{\ast} \\ $$

Commented by MJS_new last updated on 21/Sep/20

the old N is the same as the new N^★   ={1, 2, 3, ...}    the old N_0  is the same as the new N  ={0, 1, 2, ...}

$$\mathrm{the}\:\mathrm{old}\:\mathbb{N}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{new}\:\mathbb{N}^{\bigstar} \\ $$$$=\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:...\right\} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{old}\:\mathbb{N}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{new}\:\mathbb{N} \\ $$$$=\left\{\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:...\right\} \\ $$

Commented by Eric002 last updated on 21/Sep/20

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Commented by Rasheed.Sindhi last updated on 21/Sep/20

Why isn′t there any international  institute which play roll in this  connection? Which make  standards so that  such  confusions be killed?

$${Why}\:{isn}'{t}\:{there}\:{any}\:{international} \\ $$$${institute}\:{which}\:{play}\:{roll}\:{in}\:{this} \\ $$$${connection}?\:{Which}\:{make} \\ $$$${standards}\:{so}\:{that}\:\:{such} \\ $$$${confusions}\:{be}\:{killed}? \\ $$

Commented by MJS_new last updated on 21/Sep/20

standards are no longer accepted in the age  of internet; everybody′s own opinion counts  more than any standard

$$\mathrm{standards}\:\mathrm{are}\:\mathrm{no}\:\mathrm{longer}\:\mathrm{accepted}\:\mathrm{in}\:\mathrm{the}\:\mathrm{age} \\ $$$$\mathrm{of}\:\mathrm{internet};\:\mathrm{everybody}'\mathrm{s}\:\mathrm{own}\:\mathrm{opinion}\:\mathrm{counts} \\ $$$$\mathrm{more}\:\mathrm{than}\:\mathrm{any}\:\mathrm{standard} \\ $$

Commented by Rasheed.Sindhi last updated on 21/Sep/20

ThankSs Sir!

$$\mathcal{T}{hank}\mathcal{S}{s}\:\mathcal{S}{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com