Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 114551 by bemath last updated on 19/Sep/20

The value of x in the given equation  4^x −3^(x−(1/2))  = 3^(x+(1/2))  −2^(2x−1)  , is _,

$${The}\:{value}\:{of}\:{x}\:{in}\:{the}\:{given}\:{equation} \\ $$$$\mathrm{4}^{{x}} −\mathrm{3}^{{x}−\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\mathrm{3}^{{x}+\frac{\mathrm{1}}{\mathrm{2}}} \:−\mathrm{2}^{\mathrm{2}{x}−\mathrm{1}} \:,\:{is}\:\_, \\ $$

Commented by Dwaipayan Shikari last updated on 19/Sep/20

2^(2x) +2^(2x−1) =3^(x+(1/2)) +3^(x−(1/2))   2^(2x) (1+(1/2))=3^(x−(1/2)) (3+1)  2^(2x−1) .3=3^(x−(1/2)) .2^2   2^(2x−3) =3^((2x−3)/2)   (2x−3)log2=((2x−3)/2)log(3)  (2x−3)(log2−(1/2)log3)=0  2x−3=0  x=(3/2)

$$\mathrm{2}^{\mathrm{2}{x}} +\mathrm{2}^{\mathrm{2}{x}−\mathrm{1}} =\mathrm{3}^{{x}+\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{3}^{{x}−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{2}^{\mathrm{2}{x}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{3}^{{x}−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{3}+\mathrm{1}\right) \\ $$$$\mathrm{2}^{\mathrm{2}{x}−\mathrm{1}} .\mathrm{3}=\mathrm{3}^{{x}−\frac{\mathrm{1}}{\mathrm{2}}} .\mathrm{2}^{\mathrm{2}} \\ $$$$\mathrm{2}^{\mathrm{2}{x}−\mathrm{3}} =\mathrm{3}^{\frac{\mathrm{2}{x}−\mathrm{3}}{\mathrm{2}}} \\ $$$$\left(\mathrm{2}{x}−\mathrm{3}\right){log}\mathrm{2}=\frac{\mathrm{2}{x}−\mathrm{3}}{\mathrm{2}}{log}\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{2}{x}−\mathrm{3}\right)\left({log}\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}{log}\mathrm{3}\right)=\mathrm{0} \\ $$$$\mathrm{2}{x}−\mathrm{3}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed.Sindhi last updated on 19/Sep/20

Alternate way(to prevent log)   From above:  2^(2x−3) =3^((2x−3)/2)   ((2/( (√3))))^(2x−3) =((2/( (√3))))^0   2x−3=0  x=(3/2)

$${Alternate}\:{way}\left({to}\:{prevent}\:{log}\right)\: \\ $$$${From}\:{above}: \\ $$$$\mathrm{2}^{\mathrm{2}{x}−\mathrm{3}} =\mathrm{3}^{\frac{\mathrm{2}{x}−\mathrm{3}}{\mathrm{2}}} \\ $$$$\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}{x}−\mathrm{3}} =\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{0}} \\ $$$$\mathrm{2}{x}−\mathrm{3}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 19/Sep/20

Yes sir!

$${Yes}\:{sir}! \\ $$

Answered by bobhans last updated on 19/Sep/20

 ⇔ 4^x +(1/2).4^x  = ((√3)+(1/( (√3)))).3^x   ⇔ (3/2).4^x  = (4/3)(√3).3^x   ⇔ 2^(2x−3)  = 3^(x−(3/2))  ⇒(2x−3)ln (2)=(x−(3/2))ln (3)  ⇒x(2 ln 2−ln 3)=3 ln 2−(3/2)ln 3  ⇒x = (1/2)(((6ln 2−3ln 3)/(2ln 2−ln 3))) = (3/2)(((2ln 2−ln 3)/(2ln 2−ln 3)))  ⇒x = (3/2)

$$\:\Leftrightarrow\:\mathrm{4}^{{x}} +\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{4}^{{x}} \:=\:\left(\sqrt{\mathrm{3}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right).\mathrm{3}^{{x}} \\ $$$$\Leftrightarrow\:\frac{\mathrm{3}}{\mathrm{2}}.\mathrm{4}^{{x}} \:=\:\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}}.\mathrm{3}^{{x}} \\ $$$$\Leftrightarrow\:\mathrm{2}^{\mathrm{2}{x}−\mathrm{3}} \:=\:\mathrm{3}^{{x}−\frac{\mathrm{3}}{\mathrm{2}}} \:\Rightarrow\left(\mathrm{2}{x}−\mathrm{3}\right)\mathrm{ln}\:\left(\mathrm{2}\right)=\left({x}−\frac{\mathrm{3}}{\mathrm{2}}\right)\mathrm{ln}\:\left(\mathrm{3}\right) \\ $$$$\Rightarrow{x}\left(\mathrm{2}\:\mathrm{ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{3}\right)=\mathrm{3}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\:\mathrm{3} \\ $$$$\Rightarrow{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{6ln}\:\mathrm{2}−\mathrm{3ln}\:\mathrm{3}}{\mathrm{2ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{3}}\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{2ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{3}}{\mathrm{2ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{3}}\right) \\ $$$$\Rightarrow{x}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Commented by bemath last updated on 19/Sep/20

gave kudos

$${gave}\:{kudos}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com