Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 114512 by Rio Michael last updated on 19/Sep/20

Commented by Rio Michael last updated on 19/Sep/20

need some help with the above,am  particularly stuck at (e)

$$\mathrm{need}\:\mathrm{some}\:\mathrm{help}\:\mathrm{with}\:\mathrm{the}\:\mathrm{above},\mathrm{am} \\ $$$$\mathrm{particularly}\:\mathrm{stuck}\:\mathrm{at}\:\left(\mathrm{e}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 19/Sep/20

R=((v_0 ^2 sin2θ)/g)  gR=v_0 ^2 sin2θ  θ=(1/2)sin^(−1) ((gR)/v_0 ^2 )⇒θ=(1/2)sin^(−1) (3sin^2 θ)  (((v_0 sinθ)^2 )/(2g))=(R/6)  v_0 ^2 sin^2 θ=((Rg)/3)  So  sin2θ=3sin^2 θ  2sinθcosθ−3sin^2 θ=0  sinθ=0⇒θ=kπ  or  2cosθ=3sinθ  tanθ=(2/3)⇒θ=kπ+tan^(−1) (2/3)

$${R}=\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} {sin}\mathrm{2}\theta}{{g}} \\ $$$${gR}={v}_{\mathrm{0}} ^{\mathrm{2}} {sin}\mathrm{2}\theta \\ $$$$\theta=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{gR}}{{v}_{\mathrm{0}} ^{\mathrm{2}} }\Rightarrow\theta=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\mathrm{3}{sin}^{\mathrm{2}} \theta\right) \\ $$$$\frac{\left({v}_{\mathrm{0}} {sin}\theta\right)^{\mathrm{2}} }{\mathrm{2}{g}}=\frac{{R}}{\mathrm{6}} \\ $$$${v}_{\mathrm{0}} ^{\mathrm{2}} {sin}^{\mathrm{2}} \theta=\frac{{Rg}}{\mathrm{3}} \\ $$$${So} \\ $$$${sin}\mathrm{2}\theta=\mathrm{3}{sin}^{\mathrm{2}} \theta \\ $$$$\mathrm{2}{sin}\theta{cos}\theta−\mathrm{3}{sin}^{\mathrm{2}} \theta=\mathrm{0} \\ $$$${sin}\theta=\mathrm{0}\Rightarrow\theta={k}\pi \\ $$$${or} \\ $$$$\mathrm{2}{cos}\theta=\mathrm{3}{sin}\theta \\ $$$${tan}\theta=\frac{\mathrm{2}}{\mathrm{3}}\Rightarrow\theta={k}\pi+{tan}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by Rio Michael last updated on 19/Sep/20

God bless you

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\: \\ $$

Commented by Rio Michael last updated on 19/Sep/20

but sir what if v_0 ^2  is also in terms of θ_0

$$\mathrm{but}\:\mathrm{sir}\:\mathrm{what}\:\mathrm{if}\:{v}_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{is}\:\mathrm{also}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\theta_{\mathrm{0}} \\ $$

Answered by mr W last updated on 19/Sep/20

Range=R  max. height h=(R/6)  ⇒tan θ_0 =((4h)/R)=(2/3)  2gh=v_0 ^2 sin^2  θ_0 =v_0 ^2 ((2/( (√(13)))))^2   2g(R/6)=(4/(13))v_0 ^2   ⇒v_0 =(1/2)(√((13gR)/3))  (a)  t=(R/(v_0 cos θ_0 ))=(R/((1/2)(√((13gR)/3))×(3/( (√(13))))))=2(√(R/(3g)))  (b)  at peak v_y =0  v=v_x =v_0 cos θ_0 =(1/2)(√(3gR))  (c)  v_(0,y) =v_0 sin θ_0 =(1/2)(√(2gR))  (d)  v_0 =(1/2)(√((13gR)/3))  (e)  θ_0 =tan^(−1) (2/3)≈33.7°  (f)  at θ_0 =90°:  h_(max) =(v_0 ^2 /(2g))=((13R)/(24))  (g)  at θ_0 =45°  R_(max) =(v_0 ^2 /g)=((13R)/(12))  (h)  d=2v_0 cos θ_0 t

$${Range}={R} \\ $$$${max}.\:{height}\:{h}=\frac{{R}}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta_{\mathrm{0}} =\frac{\mathrm{4}{h}}{{R}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{2}{gh}={v}_{\mathrm{0}} ^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{0}} ={v}_{\mathrm{0}} ^{\mathrm{2}} \left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{g}\frac{{R}}{\mathrm{6}}=\frac{\mathrm{4}}{\mathrm{13}}{v}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$\Rightarrow{v}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{13}{gR}}{\mathrm{3}}} \\ $$$$\left({a}\right) \\ $$$${t}=\frac{{R}}{{v}_{\mathrm{0}} \mathrm{cos}\:\theta_{\mathrm{0}} }=\frac{{R}}{\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{13}{gR}}{\mathrm{3}}}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}}=\mathrm{2}\sqrt{\frac{{R}}{\mathrm{3}{g}}} \\ $$$$\left({b}\right) \\ $$$${at}\:{peak}\:{v}_{{y}} =\mathrm{0} \\ $$$${v}={v}_{{x}} ={v}_{\mathrm{0}} \mathrm{cos}\:\theta_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}{gR}} \\ $$$$\left({c}\right) \\ $$$${v}_{\mathrm{0},{y}} ={v}_{\mathrm{0}} \mathrm{sin}\:\theta_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}{gR}} \\ $$$$\left({d}\right) \\ $$$${v}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{13}{gR}}{\mathrm{3}}} \\ $$$$\left({e}\right) \\ $$$$\theta_{\mathrm{0}} =\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}}\approx\mathrm{33}.\mathrm{7}° \\ $$$$\left({f}\right) \\ $$$${at}\:\theta_{\mathrm{0}} =\mathrm{90}°: \\ $$$${h}_{{max}} =\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}{g}}=\frac{\mathrm{13}{R}}{\mathrm{24}} \\ $$$$\left({g}\right) \\ $$$${at}\:\theta_{\mathrm{0}} =\mathrm{45}° \\ $$$${R}_{{max}} =\frac{{v}_{\mathrm{0}} ^{\mathrm{2}} }{{g}}=\frac{\mathrm{13}{R}}{\mathrm{12}} \\ $$$$\left({h}\right) \\ $$$${d}=\mathrm{2}{v}_{\mathrm{0}} \mathrm{cos}\:\theta_{\mathrm{0}} {t} \\ $$

Commented by Rio Michael last updated on 20/Sep/20

thank you Mr W, but i must ask  why did you use θ_0  just for the  first quadrant and didn′t give a general  formular like θ_0  =  { ((πn)),((πn + tan^(−1) ((2/3)))) :} n ∈Z^∗   is there some reason or explanation?

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Mr}\:\mathcal{W},\:\mathrm{but}\:\mathrm{i}\:\mathrm{must}\:\mathrm{ask} \\ $$$$\mathrm{why}\:\mathrm{did}\:\mathrm{you}\:\mathrm{use}\:\theta_{\mathrm{0}} \:\mathrm{just}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{quadrant}\:\mathrm{and}\:\mathrm{didn}'\mathrm{t}\:\mathrm{give}\:\mathrm{a}\:\mathrm{general} \\ $$$$\mathrm{formular}\:\mathrm{like}\:\theta_{\mathrm{0}} \:=\:\begin{cases}{\pi{n}}\\{\pi{n}\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)}\end{cases}\:{n}\:\in\mathbb{Z}^{\ast} \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{some}\:\mathrm{reason}\:\mathrm{or}\:\mathrm{explanation}? \\ $$

Commented by mr W last updated on 21/Sep/20

here is physics, not mathematics!

$${here}\:{is}\:{physics},\:{not}\:{mathematics}! \\ $$

Commented by mr W last updated on 21/Sep/20

i didn′t expect that you ask this.  i did expect that you ask how i got  directly tan θ=(2/3).

$${i}\:{didn}'{t}\:{expect}\:{that}\:{you}\:{ask}\:{this}. \\ $$$${i}\:{did}\:{expect}\:{that}\:{you}\:{ask}\:{how}\:{i}\:{got} \\ $$$${directly}\:\mathrm{tan}\:\theta=\frac{\mathrm{2}}{\mathrm{3}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com