Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114192 by ZiYangLee last updated on 17/Sep/20

For a positive integer k, we write   (1+x)(1+2x)(1+3x)...(1+kx)=a_0 +a_1 x+a_2 x^2 +...a_k x^k   Let N=a_0 +a_1 +a_2 +...a_k  ,  if N is divisible by 2019, find the   smallest possible value of k.

$$\mathrm{For}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}\:{k},\:\mathrm{we}\:\mathrm{write}\: \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\left(\mathrm{1}+\mathrm{3}{x}\right)...\left(\mathrm{1}+{kx}\right)={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +...{a}_{{k}} {x}^{{k}} \\ $$$$\mathrm{Let}\:{N}={a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...{a}_{{k}} \:, \\ $$$$\mathrm{if}\:{N}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2019},\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{smallest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{k}. \\ $$

Answered by Olaf last updated on 17/Sep/20

P_k (x) = Π_(p=1) ^k (1+px) = Σ_(p=0) ^k a_p x^p   Σ_(p=0) ^k a_p  = P_k (1) = Π_(p=1) ^k (1+p) = Π_(p=2) ^(k+1) p = (k+1)!  N = (k+1)!  2019 = 3×673  ⇒ k+1 = 673  k = 672

$$\mathrm{P}_{{k}} \left({x}\right)\:=\:\underset{{p}=\mathrm{1}} {\overset{{k}} {\prod}}\left(\mathrm{1}+{px}\right)\:=\:\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}{a}_{{p}} {x}^{{p}} \\ $$$$\underset{{p}=\mathrm{0}} {\overset{{k}} {\sum}}{a}_{{p}} \:=\:\mathrm{P}_{{k}} \left(\mathrm{1}\right)\:=\:\underset{{p}=\mathrm{1}} {\overset{{k}} {\prod}}\left(\mathrm{1}+{p}\right)\:=\:\underset{{p}=\mathrm{2}} {\overset{{k}+\mathrm{1}} {\prod}}{p}\:=\:\left({k}+\mathrm{1}\right)! \\ $$$$\mathrm{N}\:=\:\left({k}+\mathrm{1}\right)! \\ $$$$\mathrm{2019}\:=\:\mathrm{3}×\mathrm{673} \\ $$$$\Rightarrow\:{k}+\mathrm{1}\:=\:\mathrm{673} \\ $$$${k}\:=\:\mathrm{672} \\ $$

Commented by ZiYangLee last updated on 18/Sep/20

Commented by ZiYangLee last updated on 18/Sep/20

nice try!

$$\mathrm{nice}\:\mathrm{try}!\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com