Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114152 by mohammad17 last updated on 17/Sep/20

if f(x)=3x−2  find f^(−1) (x) ?    (2)if f(x)=3x^2 −x+10 ,g(x)=1−20x find   (fog)(5)

$${if}\:{f}\left({x}\right)=\mathrm{3}{x}−\mathrm{2}\:\:{find}\:{f}^{−\mathrm{1}} \left({x}\right)\:? \\ $$$$ \\ $$$$\left(\mathrm{2}\right){if}\:{f}\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −{x}+\mathrm{10}\:,{g}\left({x}\right)=\mathrm{1}−\mathrm{20}{x}\:{find}\: \\ $$$$\left({fog}\right)\left(\mathrm{5}\right) \\ $$

Answered by bemath last updated on 17/Sep/20

f^(−1) (x)=((x+2)/3)  f(g(5))=f(−99) = 3(−99)^2 +99+10

$${f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+\mathrm{2}}{\mathrm{3}} \\ $$$${f}\left({g}\left(\mathrm{5}\right)\right)={f}\left(−\mathrm{99}\right)\:=\:\mathrm{3}\left(−\mathrm{99}\right)^{\mathrm{2}} +\mathrm{99}+\mathrm{10} \\ $$

Commented by mohammad17 last updated on 17/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by physicstutes last updated on 17/Sep/20

(1) f(x) = 3x−2  let f(x) = u  ⇒ u = 3x−2    u + 2 = 3x  and  x = ((u+2)/3)  ∴ f^(−1) (x) = ((x + 2)/3).  (2) f(x) = 3x^2 −x + 10 and g(x) = 1−20 x   f_o  g (5)= f[g(5)]  but g(5) = 1−20(5) = 1−100 = −99.   ⇒ f_o g(5) = f(−99)    and f(−99) = 3(−99)^2 −(−99) + 10 = 3(970,299) + 99 + 10   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  (1) f^(−1) (x) = ((x + 2)/3) , (2)   f _o  g (5) = 2,910, 997

$$\left(\mathrm{1}\right)\:{f}\left({x}\right)\:=\:\mathrm{3}{x}−\mathrm{2} \\ $$$$\mathrm{let}\:{f}\left({x}\right)\:=\:{u} \\ $$$$\Rightarrow\:{u}\:=\:\mathrm{3}{x}−\mathrm{2}\: \\ $$$$\:{u}\:+\:\mathrm{2}\:=\:\mathrm{3}{x} \\ $$$$\mathrm{and}\:\:{x}\:=\:\frac{{u}+\mathrm{2}}{\mathrm{3}} \\ $$$$\therefore\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:\frac{{x}\:+\:\mathrm{2}}{\mathrm{3}}. \\ $$$$\left(\mathrm{2}\right)\:{f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{2}} −{x}\:+\:\mathrm{10}\:\mathrm{and}\:\mathrm{g}\left({x}\right)\:=\:\mathrm{1}−\mathrm{20}\:{x} \\ $$$$\:{f}_{{o}} \:\mathrm{g}\:\left(\mathrm{5}\right)=\:{f}\left[\mathrm{g}\left(\mathrm{5}\right)\right] \\ $$$$\mathrm{but}\:\mathrm{g}\left(\mathrm{5}\right)\:=\:\mathrm{1}−\mathrm{20}\left(\mathrm{5}\right)\:=\:\mathrm{1}−\mathrm{100}\:=\:−\mathrm{99}. \\ $$$$\:\Rightarrow\:{f}_{{o}} \mathrm{g}\left(\mathrm{5}\right)\:=\:{f}\left(−\mathrm{99}\right)\: \\ $$$$\:\mathrm{and}\:{f}\left(−\mathrm{99}\right)\:=\:\mathrm{3}\left(−\mathrm{99}\right)^{\mathrm{2}} −\left(−\mathrm{99}\right)\:+\:\mathrm{10}\:=\:\mathrm{3}\left(\mathrm{970},\mathrm{299}\right)\:+\:\mathrm{99}\:+\:\mathrm{10} \\ $$$$\:−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$$\left(\mathrm{1}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:\frac{{x}\:+\:\mathrm{2}}{\mathrm{3}}\:,\:\left(\mathrm{2}\right)\:\:\:{f}\:_{{o}} \:\mathrm{g}\:\left(\mathrm{5}\right)\:=\:\mathrm{2},\mathrm{910},\:\mathrm{997} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com