Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 11413 by agni5 last updated on 24/Mar/17

Find the length of the arc of the hyperbolic  spiral  rθ=a  lying between  r=a  and   r=2a.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{the}\:\mathrm{hyperbolic} \\ $$$$\mathrm{spiral}\:\:\mathrm{r}\theta=\mathrm{a}\:\:\mathrm{lying}\:\mathrm{between}\:\:\mathrm{r}=\mathrm{a}\:\:\mathrm{and}\: \\ $$$$\mathrm{r}=\mathrm{2a}. \\ $$

Answered by mrW1 last updated on 26/Mar/17

r=(a/θ)  (dr/dθ)=−(a/θ^2 )  (√(r^2 +((dr/dθ))^2 ))=((a(√(1+θ^2 )))/θ^2 )  L=∫_θ_1  ^θ_2  (√(r^2 +((dr/dθ))^2 ))dθ=a∫_θ_1  ^θ_2  ((√(1+θ^2 ))/θ^2 )dθ  =a[−((√(1+θ^2 ))/θ)+ln (θ+(√(1+θ^2 )))]_θ_1  ^θ_2    =a[((√(1+θ_1 ^2 ))/θ_1 )−((√(1+θ_2 ^2 ))/θ_2 )+ln ((θ_2 +(√(1+θ_2 ^2 )))/(θ_1 +(√(1+θ_1 ^2 ))))]    with θ_1 =(a/r_1 )=(a/(2a))=(1/2) and θ_2 =(a/r_2 )=(a/a)=1  L=a[((√(1+(1/4)))/(1/2))−((√(1+1))/1)+ln ((1+(√(1+1)))/((1/2)+(√(1+(1/4)))))]  L=a[(√5)−(√2)+ln ((2(1+(√2)))/(1+(√5)))]

$${r}=\frac{{a}}{\theta} \\ $$$$\frac{{dr}}{{d}\theta}=−\frac{{a}}{\theta^{\mathrm{2}} } \\ $$$$\sqrt{{r}^{\mathrm{2}} +\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} }=\frac{{a}\sqrt{\mathrm{1}+\theta^{\mathrm{2}} }}{\theta^{\mathrm{2}} } \\ $$$${L}=\int_{\theta_{\mathrm{1}} } ^{\theta_{\mathrm{2}} } \sqrt{{r}^{\mathrm{2}} +\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} }{d}\theta={a}\int_{\theta_{\mathrm{1}} } ^{\theta_{\mathrm{2}} } \frac{\sqrt{\mathrm{1}+\theta^{\mathrm{2}} }}{\theta^{\mathrm{2}} }{d}\theta \\ $$$$={a}\left[−\frac{\sqrt{\mathrm{1}+\theta^{\mathrm{2}} }}{\theta}+\mathrm{ln}\:\left(\theta+\sqrt{\mathrm{1}+\theta^{\mathrm{2}} }\right)\right]_{\theta_{\mathrm{1}} } ^{\theta_{\mathrm{2}} } \\ $$$$={a}\left[\frac{\sqrt{\mathrm{1}+\theta_{\mathrm{1}} ^{\mathrm{2}} }}{\theta_{\mathrm{1}} }−\frac{\sqrt{\mathrm{1}+\theta_{\mathrm{2}} ^{\mathrm{2}} }}{\theta_{\mathrm{2}} }+\mathrm{ln}\:\frac{\theta_{\mathrm{2}} +\sqrt{\mathrm{1}+\theta_{\mathrm{2}} ^{\mathrm{2}} }}{\theta_{\mathrm{1}} +\sqrt{\mathrm{1}+\theta_{\mathrm{1}} ^{\mathrm{2}} }}\right] \\ $$$$ \\ $$$${with}\:\theta_{\mathrm{1}} =\frac{{a}}{{r}_{\mathrm{1}} }=\frac{{a}}{\mathrm{2}{a}}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:\theta_{\mathrm{2}} =\frac{{a}}{{r}_{\mathrm{2}} }=\frac{{a}}{{a}}=\mathrm{1} \\ $$$${L}={a}\left[\frac{\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}}}{\frac{\mathrm{1}}{\mathrm{2}}}−\frac{\sqrt{\mathrm{1}+\mathrm{1}}}{\mathrm{1}}+\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{1}}}{\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}}}\right] \\ $$$${L}={a}\left[\sqrt{\mathrm{5}}−\sqrt{\mathrm{2}}+\mathrm{ln}\:\frac{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{1}+\sqrt{\mathrm{5}}}\right] \\ $$

Commented by mrW1 last updated on 26/Mar/17

the answer is corrected.  please see also Q11433.

$${the}\:{answer}\:{is}\:{corrected}. \\ $$$${please}\:{see}\:{also}\:{Q}\mathrm{11433}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com