Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114072 by Lordose last updated on 17/Sep/20

∫(1/(sinx + cosx))dx

$$\int\frac{\mathrm{1}}{\boldsymbol{\mathrm{sinx}}\:+\:\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}} \\ $$

Answered by Olaf last updated on 17/Sep/20

x = (π/4)−u  sinx+cosx =   (sin(π/4)cosu−sinucos(π/4))+(cos(π/4)cosu+sin(π/4)sinu)  = ((√2)/2)(cosu−sinu)+((√2)/2)(cosu+sinu)  = (√2)cosu  −(1/( (√2)))∫(du/(cosu)) = −(1/( (√2)))∫(du/((1−t^2 )/(1+t^2 )))  with t = tan(u/2)  dt = (1/2)(1+tan^2 (u/2))du  du = ((2dt)/(1+t^2 ))  −(1/( (√2)))∫((1+t^2 )/(1−t^2 )).((2dt)/(1+t^2 ))  = −(√2)∫(dt/(1−t^2 )) = −(1/( (√2)))∫((1/(1−t))+(1/(1+t)))dt  = (1/( (√2)))ln∣((1−t)/(1+t))∣ = (1/( (√2)))ln∣((1−tan(u/2))/(1+tan(u/2)))∣  (1/( (√2)))ln∣((1−tan((π/8)−(x/2)))/(1+tan((π/8)−(x/2))))∣...

$${x}\:=\:\frac{\pi}{\mathrm{4}}−{u} \\ $$$$\mathrm{sin}{x}+\mathrm{cos}{x}\:=\: \\ $$$$\left(\mathrm{sin}\frac{\pi}{\mathrm{4}}\mathrm{cos}{u}−\mathrm{sin}{u}\mathrm{cos}\frac{\pi}{\mathrm{4}}\right)+\left(\mathrm{cos}\frac{\pi}{\mathrm{4}}\mathrm{cos}{u}+\mathrm{sin}\frac{\pi}{\mathrm{4}}\mathrm{sin}{u}\right) \\ $$$$=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{cos}{u}−\mathrm{sin}{u}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{cos}{u}+\mathrm{sin}{u}\right) \\ $$$$=\:\sqrt{\mathrm{2}}\mathrm{cos}{u} \\ $$$$−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{du}}{\mathrm{cos}{u}}\:=\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{du}}{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$\mathrm{with}\:{t}\:=\:\mathrm{tan}\frac{{u}}{\mathrm{2}} \\ $$$${dt}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \frac{{u}}{\mathrm{2}}\right){du} \\ $$$${du}\:=\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}^{\mathrm{2}} }.\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:−\sqrt{\mathrm{2}}\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:=\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\left(\frac{\mathrm{1}}{\mathrm{1}−{t}}+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\mid\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\mid\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\mid\frac{\mathrm{1}−\mathrm{tan}\frac{{u}}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\frac{{u}}{\mathrm{2}}}\mid \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\mid\frac{\mathrm{1}−\mathrm{tan}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tan}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}\mid... \\ $$

Answered by MJS_new last updated on 17/Sep/20

∫(dx/(sin x +cos x))=       [t=x+(π/4) → dx=dt]  =((√2)/2)∫csc t dt=((√2)/2)ln ∣tan (t/2)∣=  =((√2)/2)ln ∣tan ((x/2)+(π/8))∣=  =((√2)/2)ln ∣(((√2)+2sin x)/( (√2)+2cos x))∣ +C

$$\int\frac{{dx}}{\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\frac{\pi}{\mathrm{4}}\:\rightarrow\:{dx}={dt}\right] \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\mathrm{csc}\:{t}\:{dt}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\mid= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{8}}\right)\mid= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{2}}+\mathrm{2sin}\:{x}}{\:\sqrt{\mathrm{2}}+\mathrm{2cos}\:{x}}\mid\:+{C} \\ $$

Answered by Dwaipayan Shikari last updated on 17/Sep/20

∫(1/(sinx+cosx))dx  =(√2)∫(1/(cos((π/4)−x)))dx  =(√2) ∫sec((π/4)−x)dx  =−(√2) ∫secudu=−(√2) log(secu+tanu)  =−(√2)  log(sec((π/4)−x)+tan((π/4)−x))

$$\int\frac{\mathrm{1}}{{sinx}+{cosx}}{dx} \\ $$$$=\sqrt{\mathrm{2}}\int\frac{\mathrm{1}}{{cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right)}{dx} \\ $$$$=\sqrt{\mathrm{2}}\:\int{sec}\left(\frac{\pi}{\mathrm{4}}−{x}\right){dx} \\ $$$$=−\sqrt{\mathrm{2}}\:\int{secudu}=−\sqrt{\mathrm{2}}\:{log}\left({secu}+{tanu}\right) \\ $$$$=−\sqrt{\mathrm{2}}\:\:{log}\left({sec}\left(\frac{\pi}{\mathrm{4}}−{x}\right)+{tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right) \\ $$

Commented by MJS_new last updated on 17/Sep/20

no.

$$\mathrm{no}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com