Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 11395 by Joel576 last updated on 23/Mar/17

Prove that those functions below don′t have limit  a) lim_((x,y)→(0,0))   ((xy)/(x^2  + y^2 ))    b)  lim_((x,y)→(0,0))   ((xy + y^3 )/(x^2  + y^2 ))

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{those}\:\mathrm{functions}\:\mathrm{below}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{limit} \\ $$$$\left.\mathrm{a}\right)\:\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\:\frac{{xy}}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} } \\ $$$$ \\ $$$$\left.{b}\right)\:\:\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\:\frac{{xy}\:+\:{y}^{\mathrm{3}} }{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} } \\ $$

Commented by prakash jain last updated on 23/Mar/17

a)  x=rcos θ  y=rsin θ    ((xy)/(x^2  + y^2 ))=((r^2 cos θsin θ)/r^2 )= ((sin 2θ)/2)  lim_((x,y)→(0,0))   ((xy)/(x^2  + y^2 ))=lim_(r→0) ((sin 2θ)/2)=((sin 2θ)/2)  The limit value depends on the angle of  the line chosen to approach (0,0) so the  limit does not exist.

$$\left.{a}\right) \\ $$$${x}={r}\mathrm{cos}\:\theta \\ $$$${y}={r}\mathrm{sin}\:\theta \\ $$$$\:\:\frac{{xy}}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }=\frac{{r}^{\mathrm{2}} \mathrm{cos}\:\theta\mathrm{sin}\:\theta}{{r}^{\mathrm{2}} }=\:\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}} \\ $$$$\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\:\frac{{xy}}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }=\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}=\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{limit}\:\mathrm{value}\:\mathrm{depends}\:\mathrm{on}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{chosen}\:\mathrm{to}\:\mathrm{approach}\:\left(\mathrm{0},\mathrm{0}\right)\:\mathrm{so}\:\mathrm{the} \\ $$$$\mathrm{limit}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com