Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 113897 by Lordose last updated on 16/Sep/20

Answered by mathmax by abdo last updated on 17/Sep/20

let u_n =(3^n /(√((3n−2)2^n ))) ⇒u_n =((((3/(√2)))^n )/(√(3n−2)))  (n≥1) ⇒  (u_(n+1) /u_n ) =((((3/(√2)))^(n+1) )/(√(3n+1)))×((√(3n−2))/(((3/(√2)))^n )) =(√((3n−2)/(3n+1)))×((3/(√2)))  and lim_(n→+∞)  (u_(n+1) /u_n )  =(3/(√2))  so for ∣x∣ <(3/(√2))  the serie converges and for ∣x∣≥(3/(√2))  the serie diverges finally I_c =]−(3/(√2)),(3/(√2))[

$$\mathrm{let}\:\mathrm{u}_{\mathrm{n}} =\frac{\mathrm{3}^{\mathrm{n}} }{\sqrt{\left(\mathrm{3n}−\mathrm{2}\right)\mathrm{2}^{\mathrm{n}} }}\:\Rightarrow\mathrm{u}_{\mathrm{n}} =\frac{\left(\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{n}} }{\sqrt{\mathrm{3n}−\mathrm{2}}}\:\:\left(\mathrm{n}\geqslant\mathrm{1}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }\:=\frac{\left(\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{n}+\mathrm{1}} }{\sqrt{\mathrm{3n}+\mathrm{1}}}×\frac{\sqrt{\mathrm{3n}−\mathrm{2}}}{\left(\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{n}} }\:=\sqrt{\frac{\mathrm{3n}−\mathrm{2}}{\mathrm{3n}+\mathrm{1}}}×\left(\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\right)\:\:\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} } \\ $$$$=\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\:\:\mathrm{so}\:\mathrm{for}\:\mid\mathrm{x}\mid\:<\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\:\:\mathrm{the}\:\mathrm{serie}\:\mathrm{converges}\:\mathrm{and}\:\mathrm{for}\:\mid\mathrm{x}\mid\geqslant\frac{\mathrm{3}}{\sqrt{\mathrm{2}}} \\ $$$$\left.\mathrm{the}\:\mathrm{serie}\:\mathrm{diverges}\:\mathrm{finally}\:\mathrm{I}_{\mathrm{c}} =\right]−\frac{\mathrm{3}}{\sqrt{\mathrm{2}}},\frac{\mathrm{3}}{\sqrt{\mathrm{2}}}\left[\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com