Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113641 by ZiYangLee last updated on 14/Sep/20

Prove that there exists M>0 such that  for any positive integers n, we have  (√(1+(√(2+(√(...+(√(n+1))))))))≤M

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:{M}>\mathrm{0}\:\mathrm{such}\:\mathrm{that} \\ $$ $$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:{n},\:\mathrm{we}\:\mathrm{have} \\ $$ $$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{...+\sqrt{{n}+\mathrm{1}}}}}\leqslant{M} \\ $$

Commented bymr W last updated on 14/Sep/20

A_n =(√(1+(√(2+(√(3+...(√n)))))))  A_n >(√(1+(√(1+(√(1+...(√1)))))))=C  1+C=C^2   C^2 −C−1=0  C=((1+(√5))/2)  A_n <(√(n+(√(n+(√(n+...(√n)))))))=D  n+D=D^2   D^2 −D−n=0  D=((1+(√(1+4n)))/2)  ((1+(√5))/2)<A_n <((1+(√(1+4n)))/2)  with M=⌈((1+(√(1+4n)))/2)⌉ which always exists  A_n <M

$${A}_{{n}} =\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+...\sqrt{{n}}}}} \\ $$ $${A}_{{n}} >\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+...\sqrt{\mathrm{1}}}}}={C} \\ $$ $$\mathrm{1}+{C}={C}^{\mathrm{2}} \\ $$ $${C}^{\mathrm{2}} −{C}−\mathrm{1}=\mathrm{0} \\ $$ $${C}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$ $${A}_{{n}} <\sqrt{{n}+\sqrt{{n}+\sqrt{{n}+...\sqrt{{n}}}}}={D} \\ $$ $${n}+{D}={D}^{\mathrm{2}} \\ $$ $${D}^{\mathrm{2}} −{D}−{n}=\mathrm{0} \\ $$ $${D}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{n}}}{\mathrm{2}} \\ $$ $$\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}<{A}_{{n}} <\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{n}}}{\mathrm{2}} \\ $$ $${with}\:{M}=\lceil\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{n}}}{\mathrm{2}}\rceil\:{which}\:{always}\:{exists} \\ $$ $${A}_{{n}} <{M} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com