Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 11364 by Joel576 last updated on 22/Mar/17

lim_(x→0)   (((√(1 + tan x)) − (√(1 + sin x)))/x^3 )

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\sqrt{\mathrm{1}\:+\:\mathrm{tan}\:{x}}\:−\:\sqrt{\mathrm{1}\:+\:\mathrm{sin}\:{x}}}{{x}^{\mathrm{3}} } \\ $$

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Mar/17

(((√(1+tgx))−(√(1+sinx)))/x^3 )=(((1+tgx)−(1+sinx))/(((√(1+tgx))+(√(1+sinx))).x^3 ))=  L=lim_(x→0) ((tgx−sinx)/(((√(1+tgx))+(√(1+sinx)))x^3 ))=  lim_(x→0) ((x^3 /2)/(((√(1+0))+(√(1+0)))x^3 ))=(1/4).

$$\frac{\sqrt{\mathrm{1}+{tgx}}−\sqrt{\mathrm{1}+{sinx}}}{{x}^{\mathrm{3}} }=\frac{\left(\mathrm{1}+{tgx}\right)−\left(\mathrm{1}+{sinx}\right)}{\left(\sqrt{\mathrm{1}+{tgx}}+\sqrt{\mathrm{1}+{sinx}}\right).{x}^{\mathrm{3}} }= \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{tgx}−{sinx}}{\left(\sqrt{\mathrm{1}+{tgx}}+\sqrt{\mathrm{1}+{sinx}}\right){x}^{\mathrm{3}} }= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{x}^{\mathrm{3}} }{\mathrm{2}}}{\left(\sqrt{\mathrm{1}+\mathrm{0}}+\sqrt{\mathrm{1}+\mathrm{0}}\right){x}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{4}}. \\ $$$$ \\ $$

Commented by Joel576 last updated on 22/Mar/17

I didn′t understand how to get (x^3 /2)

$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{understand}\:\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}} \\ $$

Commented by sm3l2996 last updated on 22/Mar/17

we have tg(x)∼x+(x^3 /3) and sin(x)∼x−(x^3 /(3!))  so tg(x)−sin(x)∼(x^3 /3)+(x^3 /6)  tg(x)−sin(x)∼(x^3 /2)

$$\mathrm{we}\:\mathrm{have}\:\mathrm{tg}\left(\mathrm{x}\right)\sim\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\:\mathrm{and}\:\mathrm{sin}\left(\mathrm{x}\right)\sim\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}!} \\ $$$$\mathrm{so}\:\mathrm{tg}\left(\mathrm{x}\right)−\mathrm{sin}\left(\mathrm{x}\right)\sim\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\mathrm{tg}\left(\mathrm{x}\right)−\mathrm{sin}\left(\mathrm{x}\right)\sim\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}} \\ $$

Commented by sandy_suhendra last updated on 22/Mar/17

I try to solve with another way  for  tanx−sinx  =((sinx)/(cosx))−sinx  =((sinx−sinx.cosx)/(cosx))  =((sinx(1−cosx))/(cosx))  =((sinx.2sin^2 ((1/2)x))/(cosx))  thus ((2sinx.sin^2 ((1/2)x))/(x^3 ((√(1+tanx)) +(√(1+sinx)))))  =((2sinx)/x)×((sin^2 ((1/2)x))/x^2 )×(1/((√(1+tanx))+(√(1+sinx))))  =2 × ((1/2))^2 × (1/((√(1+tan 0)) + (√(1+sin 0))))  =(1/4)

$$\mathrm{I}\:\mathrm{try}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{with}\:\mathrm{another}\:\mathrm{way} \\ $$$$\mathrm{for}\:\:\mathrm{tanx}−\mathrm{sinx} \\ $$$$=\frac{\mathrm{sinx}}{\mathrm{cosx}}−\mathrm{sinx} \\ $$$$=\frac{\mathrm{sinx}−\mathrm{sinx}.\mathrm{cosx}}{\mathrm{cosx}} \\ $$$$=\frac{\mathrm{sinx}\left(\mathrm{1}−\mathrm{cosx}\right)}{\mathrm{cosx}} \\ $$$$=\frac{\mathrm{sinx}.\mathrm{2sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)}{\mathrm{cosx}} \\ $$$$\mathrm{thus}\:\frac{\mathrm{2sinx}.\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)}{\mathrm{x}^{\mathrm{3}} \left(\sqrt{\mathrm{1}+\mathrm{tanx}}\:+\sqrt{\mathrm{1}+\mathrm{sinx}}\right)} \\ $$$$=\frac{\mathrm{2sinx}}{\mathrm{x}}×\frac{\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }×\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{tanx}}+\sqrt{\mathrm{1}+\mathrm{sinx}}} \\ $$$$=\mathrm{2}\:×\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ×\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{tan}\:\mathrm{0}}\:+\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{0}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented by Joel576 last updated on 23/Mar/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com