Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 113557 by Aina Samuel Temidayo last updated on 14/Sep/20

If the numerically smaller root of   x^2 +mx=2 is more than the other one,  find the value of m.

$$\mathrm{If}\:\mathrm{the}\:\mathrm{numerically}\:\mathrm{smaller}\:\mathrm{root}\:\mathrm{of}\: \\ $$$${x}^{\mathrm{2}} +{mx}=\mathrm{2}\:\mathrm{is}\:\mathrm{more}\:\mathrm{than}\:\mathrm{the}\:\mathrm{other}\:\mathrm{one}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}. \\ $$

Answered by mr W last updated on 14/Sep/20

roots: a, b  ab=−2  say a>0 ⇒ b<0  ∣a∣<∣b∣  a<−b  a+b<0  m=−(a+b)>0    ⇒answer is m>0

$${roots}:\:{a},\:{b} \\ $$$${ab}=−\mathrm{2} \\ $$$${say}\:{a}>\mathrm{0}\:\Rightarrow\:{b}<\mathrm{0} \\ $$$$\mid{a}\mid<\mid{b}\mid \\ $$$${a}<−{b} \\ $$$${a}+{b}<\mathrm{0} \\ $$$${m}=−\left({a}+{b}\right)>\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{answer}\:{is}\:{m}>\mathrm{0} \\ $$

Commented by mr W last updated on 14/Sep/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com