Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 113211 by bemath last updated on 11/Sep/20

If α is a root of the equation  4x^2 +2x−1=0 . How do you  prove the other root is  4α^3 −3α ?

Ifαisarootoftheequation4x2+2x1=0.Howdoyouprovetheotherrootis4α33α?

Answered by 1549442205PVT last updated on 11/Sep/20

α is a root of the equation 4x^2 +2x−1=0 (1)  ,so we have 4α^2 +2α−1=0  ⇒4α^3 =α(1−2α)=α−2α^2 .From that  4α^3 −3α=−2α^2 −2α.Replace into(1)  we get  4(2α^2 +2α)^2 −2(2α^2 +2α)−1  =16(α^4 +2α^3 +α^2 )−4α^2 −4α−1  =16α^4 +32α^3 +12α^2 −4α−1  =(4α^2 +2α−1)^2 +16α^3 +16α^2 −2  =16α^3 +16α^2 −2=4α(4α^2 +2α−1)  +8α^2 +4α−2=8α^2 +4α−2  =2(4α^2 +2α−1)=0  This show that 4α^3 −3α is also  other root of the equation  4x^2 +2x−1=0(q.e.d)

αisarootoftheequation4x2+2x1=0(1),sowehave4α2+2α1=04α3=α(12α)=α2α2.Fromthat4α33α=2α22α.Replaceinto(1)weget4(2α2+2α)22(2α2+2α)1=16(α4+2α3+α2)4α24α1=16α4+32α3+12α24α1=(4α2+2α1)2+16α3+16α22=16α3+16α22=4α(4α2+2α1)+8α2+4α2=8α2+4α2=2(4α2+2α1)=0Thisshowthat4α33αisalsootherrootoftheequation4x2+2x1=0(q.e.d)

Answered by $@y@m last updated on 11/Sep/20

4x^2 +2x−1=0  x=((−2±(√(4+16)))/8)  x=((−2±(√(20)))/8)  x=((−2±2(√5))/8)  x=((−1±(√5))/4)  Let α=((−1+(√5))/4), β=((−1−(√5))/4)  Now,  4α^3 −3α=α(4α^2 −3)  =((−1+(√5))/4){4(((−1+(√5))/4))^2 −3}  =((−1+(√5))/4){((5+1−2(√5))/4)−3}  =((−1+(√5))/4){((6−2(√5))/4)−3}  =((−1+(√5))/4){((3−(√5))/2)−3}  =((−1+(√5))/4){((−3−(√5))/2)}  =(1/(32))(3+(√5)−5−3(√5))  =((−2−2(√5))/8)  =((−1−(√5))/4)  =β  Q.E.D.  Remark:  You may assume   β=((−1+(√5))/4), α=((−1−(√5))/4)  and still you can show that 4α^3 −3α=β

4x2+2x1=0x=2±4+168x=2±208x=2±258x=1±54Letα=1+54,β=154Now,4α33α=α(4α23)=1+54{4(1+54)23}=1+54{5+12543}=1+54{62543}=1+54{3523}=1+54{352}=132(3+5535)=2258=154=βQ.E.D.Remark:Youmayassumeβ=1+54,α=154andstillyoucanshowthat4α33α=β

Commented by 1549442205PVT last updated on 12/Sep/20

cos((2π)/5)=(((√5)−1)/4),((−1−(√5))/4)=cos((4π)/5)  =cos(((4π)/5)−2π)=cos((−6π)/5)=cos((6π)/5)  =4cos^3 ((2π)/5)−3cos((2π)/5).Hence,put α=cos((2π)/5)  =(((√5)−1)/4) then 4α^3 −3α=((−1−(√5))/4)

cos2π5=514,154=cos4π5=cos(4π52π)=cos6π5=cos6π5=4cos32π53cos2π5.Hence,putα=cos2π5=514then4α33α=154

Answered by Dwaipayan Shikari last updated on 11/Sep/20

α+β=−(1/2)  αβ=−(1/4)  (α+β)^2 −4αβ=(α−β)^2   (1/4)+1=(α−β)^2 ⇒(α−β)=±((√5)/2)  α=(((√5)−1)/4) or−((((√5)+1)/4))  β=((−(√5)−1)/4) or ((((√5)−1)/4))  4α^3 −3α=−4((((√5)+1)/4))^3 +3((((√5)+1)/4))=(((√5)−1)/4)=β  4α^3 −3α=4((((√5)−1)/4))^3 −3((((√5)−1)/4))=β

α+β=12αβ=14(α+β)24αβ=(αβ)214+1=(αβ)2(αβ)=±52α=514or(5+14)β=514or(514)4α33α=4(5+14)3+3(5+14)=514=β4α33α=4(514)33(514)=β

Terms of Service

Privacy Policy

Contact: info@tinkutara.com