Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 11321 by Joel576 last updated on 20/Mar/17

How many solution {x, y, z} that fulfilled  x + y + z = 99 ?  x,y,z ∈ N

$$\mathrm{How}\:\mathrm{many}\:\mathrm{solution}\:\left\{{x},\:{y},\:{z}\right\}\:\mathrm{that}\:\mathrm{fulfilled} \\ $$$${x}\:+\:{y}\:+\:{z}\:=\:\mathrm{99}\:? \\ $$$${x},{y},{z}\:\in\:\mathbb{N} \\ $$

Commented by prakash jain last updated on 22/Mar/17

Please have a look at stars and bars  method as well.  Suppose n objects are to be divided  in r partitions with no partition become  empty.  ★★★...★ (n stars are objects)  to divide than in r partitions we put  r−1 bars in some of the n−1 space  between stars.  examples  5 objects in 3 partions  ★★∣★∣★★  ★∣★★★∣★  basically the problem is using (r−1) positions  from (n−1) choices.  Or:^(n−1) C_(r−1)   x+y+z=n, x,y,z∈N  can be taken as divided n objects in 3  partitions, number of stars in each  partitions as value of x,y,z ans bars  are plus sign.  If zero are allowed in partition then the formula  is ^(n+r−1) C_n

$$\mathrm{Please}\:\mathrm{have}\:\mathrm{a}\:\mathrm{look}\:\mathrm{at}\:\mathrm{stars}\:\mathrm{and}\:\mathrm{bars} \\ $$$$\mathrm{method}\:\mathrm{as}\:\mathrm{well}. \\ $$$$\mathrm{Suppose}\:{n}\:\mathrm{objects}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{divided} \\ $$$$\mathrm{in}\:{r}\:\mathrm{partitions}\:\mathrm{with}\:\mathrm{no}\:\mathrm{partition}\:\mathrm{become} \\ $$$$\mathrm{empty}. \\ $$$$\bigstar\bigstar\bigstar...\bigstar\:\left({n}\:\mathrm{stars}\:\mathrm{are}\:\mathrm{objects}\right) \\ $$$$\mathrm{to}\:\mathrm{divide}\:\mathrm{than}\:\mathrm{in}\:{r}\:\mathrm{partitions}\:\mathrm{we}\:\mathrm{put} \\ $$$${r}−\mathrm{1}\:\mathrm{bars}\:\mathrm{in}\:\mathrm{some}\:\mathrm{of}\:\mathrm{the}\:{n}−\mathrm{1}\:\mathrm{space} \\ $$$$\mathrm{between}\:\mathrm{stars}. \\ $$$$\mathrm{examples} \\ $$$$\mathrm{5}\:\mathrm{objects}\:\mathrm{in}\:\mathrm{3}\:\mathrm{partions} \\ $$$$\bigstar\bigstar\mid\bigstar\mid\bigstar\bigstar \\ $$$$\bigstar\mid\bigstar\bigstar\bigstar\mid\bigstar \\ $$$$\mathrm{basically}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{using}\:\left({r}−\mathrm{1}\right)\:\mathrm{positions} \\ $$$$\mathrm{from}\:\left({n}−\mathrm{1}\right)\:\mathrm{choices}. \\ $$$$\mathrm{Or}:\:^{{n}−\mathrm{1}} {C}_{{r}−\mathrm{1}} \\ $$$${x}+{y}+{z}={n},\:{x},{y},{z}\in\mathbb{N} \\ $$$${can}\:{be}\:{taken}\:{as}\:{divided}\:{n}\:{objects}\:{in}\:\mathrm{3} \\ $$$${partitions},\:{number}\:{of}\:{stars}\:{in}\:{each} \\ $$$${partitions}\:{as}\:{value}\:{of}\:{x},{y},{z}\:{ans}\:{bars} \\ $$$${are}\:{plus}\:{sign}. \\ $$$$\mathrm{If}\:\mathrm{zero}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{in}\:\mathrm{partition}\:\mathrm{then}\:\mathrm{the}\:\mathrm{formula} \\ $$$$\mathrm{is}\:\:^{{n}+{r}−\mathrm{1}} {C}_{{n}} \\ $$

Commented by mrW1 last updated on 22/Mar/17

Thanks for your detailed explanation!

$${Thanks}\:{for}\:{your}\:{detailed}\:{explanation}! \\ $$

Answered by mrW1 last updated on 21/Mar/17

Generally the equation x+y=n   with x, y, n∈N and n≥2  has following solutions for x/y:  1/n−1  2/n−2  3/n−3  ...  n−1/1  ⇒total number of solutions = n−1.    The equation x+y+z=99 has following  number of solutions:  z=97⇒x+y=2⇒no. of sol.=2−1=1  z=96⇒x+y=3⇒no. of sol.=3−1=2  z=95⇒x+y=4⇒no. of sol.=4−1=3  ......  z=2⇒x+y=97⇒no. of sol.=97−1=96  z=1⇒x+y=98⇒no. of sol.=98−1=97    ⇒total no. of sol.=((1+97)/2)×97=4753    In general x+y+z=n (n≥3) has  (((n−1)(n−2))/2)  solutions.    In general x_1 +x_2 +x_3 +x_4 =n (n≥4) has  (((n−1)(n−2)(n−3))/6)  solutions.    In general x_1 +x_2 +∙∙∙+x_k =n (n≥k) has  ^(n−1) C_(k−1) =(((n−1)(n−2)∙∙∙(n−k+1))/((k−1)!))  solutions.

$${Generally}\:{the}\:{equation}\:{x}+{y}={n}\: \\ $$$${with}\:{x},\:{y},\:{n}\in\mathbb{N}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$${has}\:{following}\:{solutions}\:{for}\:{x}/{y}: \\ $$$$\mathrm{1}/{n}−\mathrm{1} \\ $$$$\mathrm{2}/{n}−\mathrm{2} \\ $$$$\mathrm{3}/{n}−\mathrm{3} \\ $$$$... \\ $$$${n}−\mathrm{1}/\mathrm{1} \\ $$$$\Rightarrow{total}\:{number}\:{of}\:{solutions}\:=\:{n}−\mathrm{1}. \\ $$$$ \\ $$$${The}\:{equation}\:{x}+{y}+{z}=\mathrm{99}\:{has}\:{following} \\ $$$${number}\:{of}\:{solutions}: \\ $$$${z}=\mathrm{97}\Rightarrow{x}+{y}=\mathrm{2}\Rightarrow{no}.\:{of}\:{sol}.=\mathrm{2}−\mathrm{1}=\mathrm{1} \\ $$$${z}=\mathrm{96}\Rightarrow{x}+{y}=\mathrm{3}\Rightarrow{no}.\:{of}\:{sol}.=\mathrm{3}−\mathrm{1}=\mathrm{2} \\ $$$${z}=\mathrm{95}\Rightarrow{x}+{y}=\mathrm{4}\Rightarrow{no}.\:{of}\:{sol}.=\mathrm{4}−\mathrm{1}=\mathrm{3} \\ $$$$...... \\ $$$${z}=\mathrm{2}\Rightarrow{x}+{y}=\mathrm{97}\Rightarrow{no}.\:{of}\:{sol}.=\mathrm{97}−\mathrm{1}=\mathrm{96} \\ $$$${z}=\mathrm{1}\Rightarrow{x}+{y}=\mathrm{98}\Rightarrow{no}.\:{of}\:{sol}.=\mathrm{98}−\mathrm{1}=\mathrm{97} \\ $$$$ \\ $$$$\Rightarrow{total}\:{no}.\:{of}\:{sol}.=\frac{\mathrm{1}+\mathrm{97}}{\mathrm{2}}×\mathrm{97}=\mathrm{4753} \\ $$$$ \\ $$$${In}\:{general}\:{x}+{y}+{z}={n}\:\left({n}\geqslant\mathrm{3}\right)\:{has} \\ $$$$\frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{2}} \\ $$$${solutions}. \\ $$$$ \\ $$$${In}\:{general}\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}} ={n}\:\left({n}\geqslant\mathrm{4}\right)\:{has} \\ $$$$\frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)}{\mathrm{6}} \\ $$$${solutions}. \\ $$$$ \\ $$$${In}\:{general}\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +\centerdot\centerdot\centerdot+{x}_{{k}} ={n}\:\left({n}\geqslant{k}\right)\:{has} \\ $$$$\:^{{n}−\mathrm{1}} {C}_{{k}−\mathrm{1}} =\frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\centerdot\centerdot\centerdot\left({n}−{k}+\mathrm{1}\right)}{\left({k}−\mathrm{1}\right)!} \\ $$$${solutions}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Mar/17

thank you dear mrW1.your answers  are so beautiful and perfect.

$${thank}\:{you}\:{dear}\:{mrW}\mathrm{1}.{your}\:{answers} \\ $$$${are}\:{so}\:{beautiful}\:{and}\:{perfect}. \\ $$

Answered by ajfour last updated on 20/Mar/17

^(98) C_2

$$\:^{\mathrm{98}} \mathrm{C}_{\mathrm{2}} \\ $$

Commented by ajfour last updated on 20/Mar/17

coeff of x^(99 ) in (x+x^2 +x^3 +....+x^(97) )^3   =coeff of x^(96)  in (1+x+x^2 +...+x^(96) )^3   =coeff of x^(96)  in (((1−x^(97) )/(1−x)))^3   = coeff of x^(96)  in (1−x)^(−3)   As coeff of x^r  in (1−x)^(−n)  is^(n+r−1) C_(n−1)   so number of positive integral  solutions to the equation is  = ^(3+96−1) C_(3−1) = ^(98) C_2  =4753

$$\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{99}\:} \mathrm{in}\:\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} +....+\mathrm{x}^{\mathrm{97}} \right)^{\mathrm{3}} \\ $$$$=\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{96}} \:\mathrm{in}\:\left(\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} +...+\mathrm{x}^{\mathrm{96}} \right)^{\mathrm{3}} \\ $$$$=\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{96}} \:\mathrm{in}\:\left(\frac{\mathrm{1}−\mathrm{x}^{\mathrm{97}} }{\mathrm{1}−\mathrm{x}}\right)^{\mathrm{3}} \\ $$$$=\:\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{96}} \:\mathrm{in}\:\left(\mathrm{1}−\mathrm{x}\right)^{−\mathrm{3}} \\ $$$$\mathrm{As}\:\mathrm{coeff}\:\mathrm{of}\:\mathrm{x}^{\mathrm{r}} \:\mathrm{in}\:\left(\mathrm{1}−\mathrm{x}\right)^{−\mathrm{n}} \:\mathrm{is}\:^{\mathrm{n}+\mathrm{r}−\mathrm{1}} \mathrm{C}_{\mathrm{n}−\mathrm{1}} \\ $$$$\mathrm{so}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integral} \\ $$$$\mathrm{solutions}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is} \\ $$$$=\:\:^{\mathrm{3}+\mathrm{96}−\mathrm{1}} \mathrm{C}_{\mathrm{3}−\mathrm{1}} =\:\:^{\mathrm{98}} \mathrm{C}_{\mathrm{2}} \:=\mathrm{4753} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com