Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 1130 by 123456 last updated on 22/Jun/15

f:R→R  f(xy)+f(x+y)=f(x)f(y)+f(x)+f(y)  f(−1)=?  f(0)=?  f(+1)=?

$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({xy}\right)+{f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right)+{f}\left({x}\right)+{f}\left({y}\right) \\ $$$${f}\left(−\mathrm{1}\right)=? \\ $$$${f}\left(\mathrm{0}\right)=? \\ $$$${f}\left(+\mathrm{1}\right)=? \\ $$

Answered by prakash jain last updated on 23/Jun/15

f(x)=x  f(x+y)+f(xy)=x+y+xy=f(x)+f(y)+f(x)f(y)  f(0)=0  f(1)=1  f(−1)=−1

$${f}\left({x}\right)={x} \\ $$$${f}\left({x}+{y}\right)+{f}\left({xy}\right)={x}+{y}+{xy}={f}\left({x}\right)+{f}\left({y}\right)+{f}\left({x}\right){f}\left({y}\right) \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left(−\mathrm{1}\right)=−\mathrm{1} \\ $$

Commented by Rasheed Soomro last updated on 15/Jul/15

You have proved yourself as an intelligent mathematition!

$${You}\:{have}\:{proved}\:{yourself}\:{as}\:{an}\:{intelligent}\:{mathematition}! \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com