Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 11272 by chux last updated on 18/Mar/17

Answered by mrW1 last updated on 18/Mar/17

(1)⇒y+z=1−x  (2)⇒y^2 +z^2 =35−x^2   (y+z)^2 =(1−x)^2   y^2 +z^2 +2yz=1+x^2 −2x  35−x^2 +2yz=1+x^2 −2x  yz=x^2 −x−17  (3)⇒y^3 +z^3 =97−x^3   (y+z)(y^2 +z^2 −yz)=97−x^3   (1−x)(35−x^2 −x^2 +x+17)=97−x^3   (1−x)(52−2x^2 +x)=97−x^3   52−2x^2 +x−52x+2x^3 −x^2 −97+x^3 =0  −3x^2 −51x+3x^3 −45=0  x^3 −x^2 −17x−15=0  (x+1)(x+3)(x−5)=0  ⇒x=−3, −1, 5  similarly  ⇒y=−3, −1, 5  ⇒z=−3, −1, 5    all possible solutions are therefore   ((x),(y),(z) )= (((−3)),((−1)),(5) )   ((x),(y),(z) )= (((−3)),(5),((−1)) )   ((x),(y),(z) )= (((−1)),((−3)),(5) )   ((x),(y),(z) )= (((−1)),(5),((−3)) )   ((x),(y),(z) )= ((5),((−3)),((−1)) )   ((x),(y),(z) )= ((5),((−1)),((−3)) )

$$\left(\mathrm{1}\right)\Rightarrow{y}+{z}=\mathrm{1}−{x} \\ $$$$\left(\mathrm{2}\right)\Rightarrow{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{35}−{x}^{\mathrm{2}} \\ $$$$\left({y}+{z}\right)^{\mathrm{2}} =\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}{yz}=\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{x} \\ $$$$\mathrm{35}−{x}^{\mathrm{2}} +\mathrm{2}{yz}=\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{x} \\ $$$${yz}={x}^{\mathrm{2}} −{x}−\mathrm{17} \\ $$$$\left(\mathrm{3}\right)\Rightarrow{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{97}−{x}^{\mathrm{3}} \\ $$$$\left({y}+{z}\right)\left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{yz}\right)=\mathrm{97}−{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{1}−{x}\right)\left(\mathrm{35}−{x}^{\mathrm{2}} −{x}^{\mathrm{2}} +{x}+\mathrm{17}\right)=\mathrm{97}−{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{1}−{x}\right)\left(\mathrm{52}−\mathrm{2}{x}^{\mathrm{2}} +{x}\right)=\mathrm{97}−{x}^{\mathrm{3}} \\ $$$$\mathrm{52}−\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{52}{x}+\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{97}+{x}^{\mathrm{3}} =\mathrm{0} \\ $$$$−\mathrm{3}{x}^{\mathrm{2}} −\mathrm{51}{x}+\mathrm{3}{x}^{\mathrm{3}} −\mathrm{45}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{17}{x}−\mathrm{15}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)\left({x}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=−\mathrm{3},\:−\mathrm{1},\:\mathrm{5} \\ $$$${similarly} \\ $$$$\Rightarrow{y}=−\mathrm{3},\:−\mathrm{1},\:\mathrm{5} \\ $$$$\Rightarrow{z}=−\mathrm{3},\:−\mathrm{1},\:\mathrm{5} \\ $$$$ \\ $$$${all}\:{possible}\:{solutions}\:{are}\:{therefore} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{3}}\\{−\mathrm{1}}\\{\mathrm{5}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{3}}\\{\mathrm{5}}\\{−\mathrm{1}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{1}}\\{−\mathrm{3}}\\{\mathrm{5}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{1}}\\{\mathrm{5}}\\{−\mathrm{3}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{\mathrm{5}}\\{−\mathrm{3}}\\{−\mathrm{1}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{\mathrm{5}}\\{−\mathrm{1}}\\{−\mathrm{3}}\end{pmatrix} \\ $$

Commented by chux last updated on 19/Mar/17

i really appreciate ....thanx alot.

$$\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:....\mathrm{thanx}\:\mathrm{alot}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com