Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112320 by mohammad17 last updated on 07/Sep/20

Commented by mohammad17 last updated on 07/Sep/20

help me sir in Q1

$${help}\:{me}\:{sir}\:{in}\:{Q}\mathrm{1} \\ $$

Answered by john santu last updated on 07/Sep/20

(1) let 2^(cos t)  = m ⇒ (1/(m−1)) > (1/(1−(1/2)m))  (1/(m−1)) > (2/(2−m)) ⇒ (1/(m−1))−(2/(2−m)) >0  ⇒(1/(m−1))+(2/(m−2)) > 0  ⇒ ((m−2+2m−2)/((m−1)(m−2))) > 0  ⇒((3m−4)/((m−1)(m−2))) > 0  ⇒ 1<m<(4/3) ∪ m > 2  ⇒1<2^(cos t)  <(4/3) ∪ 2^(cos t)  > 2  ⇒0 < cos t < 2−log _2 (3) ∪ cos t > 1   for cos t > 1 , t ∈R , t = ∅  ∴ 0 < cos t < 0.415

$$\left(\mathrm{1}\right)\:{let}\:\mathrm{2}^{\mathrm{cos}\:{t}} \:=\:{m}\:\Rightarrow\:\frac{\mathrm{1}}{{m}−\mathrm{1}}\:>\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{m}} \\ $$$$\frac{\mathrm{1}}{{m}−\mathrm{1}}\:>\:\frac{\mathrm{2}}{\mathrm{2}−{m}}\:\Rightarrow\:\frac{\mathrm{1}}{{m}−\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{2}−{m}}\:>\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{m}−\mathrm{1}}+\frac{\mathrm{2}}{{m}−\mathrm{2}}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\frac{{m}−\mathrm{2}+\mathrm{2}{m}−\mathrm{2}}{\left({m}−\mathrm{1}\right)\left({m}−\mathrm{2}\right)}\:>\:\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{3}{m}−\mathrm{4}}{\left({m}−\mathrm{1}\right)\left({m}−\mathrm{2}\right)}\:>\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}<{m}<\frac{\mathrm{4}}{\mathrm{3}}\:\cup\:{m}\:>\:\mathrm{2} \\ $$$$\Rightarrow\mathrm{1}<\mathrm{2}^{\mathrm{cos}\:{t}} \:<\frac{\mathrm{4}}{\mathrm{3}}\:\cup\:\mathrm{2}^{\mathrm{cos}\:{t}} \:>\:\mathrm{2} \\ $$$$\Rightarrow\mathrm{0}\:<\:\mathrm{cos}\:{t}\:<\:\mathrm{2}−\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{3}\right)\:\cup\:\mathrm{cos}\:{t}\:>\:\mathrm{1}\: \\ $$$${for}\:\mathrm{cos}\:{t}\:>\:\mathrm{1}\:,\:{t}\:\in\mathbb{R}\:,\:{t}\:=\:\varnothing \\ $$$$\therefore\:\mathrm{0}\:<\:\mathrm{cos}\:{t}\:<\:\mathrm{0}.\mathrm{415} \\ $$

Commented by mohammad17 last updated on 07/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by 1549442205PVT last updated on 08/Sep/20

Put 2^(cost) =x.Then (1/(x−1))>(1/(1−(1/2)x))  ⇔(1/(x−1))>(2/(2−x))⇔(1/(x−1))−(2/(2−x))>0  ((2−x−2(x−1))/((x−1)(2−x)))>0⇔((4−3x)/((x−1)(2−x)))>0  ⇔((3x−4)/((x−1)(x−2)))>0⇔((x−4/3)/((x−1)(x−2)))>0  ⇔x∈(1;(4/3))∪(2;+∞)  a)x∈(1,( / ))⇔1< ^(cost) <( / )    ⇔0<cost<((ln(4/3))/(ln2))≈0.4150=cos65°29′  ⇔t∈(−90°+k360°;−65°28′+k360)∪(65°28′+k360°;90°+k360)  b)x∈(2;+∞)⇔2^(cost) >2⇔cost>1  inequality has no roots   Thus,given inequality has roots are:  t∈(−90°+k360°;−65°28′+k360)∪  (65°28′+k360°;90°+k360°)

$$\mathrm{Put}\:\mathrm{2}^{\mathrm{cost}} =\mathrm{x}.\mathrm{Then}\:\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}>\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}>\frac{\mathrm{2}}{\mathrm{2}−\mathrm{x}}\Leftrightarrow\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{2}−\mathrm{x}}>\mathrm{0} \\ $$$$\frac{\mathrm{2}−\mathrm{x}−\mathrm{2}\left(\mathrm{x}−\mathrm{1}\right)}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{2}−\mathrm{x}\right)}>\mathrm{0}\Leftrightarrow\frac{\mathrm{4}−\mathrm{3x}}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{2}−\mathrm{x}\right)}>\mathrm{0} \\ $$$$\Leftrightarrow\frac{\mathrm{3x}−\mathrm{4}}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)}>\mathrm{0}\Leftrightarrow\frac{\mathrm{x}−\mathrm{4}/\mathrm{3}}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)}>\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{x}\in\left(\mathrm{1};\frac{\mathrm{4}}{\mathrm{3}}\right)\cup\left(\mathrm{2};+\infty\right) \\ $$$$\left.\boldsymbol{{a}}\right)\boldsymbol{{x}}\in\left(\mathrm{1},\frac{ }{ }\right)\Leftrightarrow\mathrm{1}< ^{\boldsymbol{{cost}}} <\frac{ }{ }\: \\ $$$$\:\Leftrightarrow\mathrm{0}<\boldsymbol{\mathrm{cost}}<\frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{4}/\mathrm{3}\right)}{\boldsymbol{\mathrm{ln}}\mathrm{2}}\approx\mathrm{0}.\mathrm{4150}=\boldsymbol{\mathrm{cos}}\mathrm{65}°\mathrm{29}' \\ $$$$\Leftrightarrow\mathrm{t}\in\left(−\mathrm{90}°+\mathrm{k360}°;−\mathrm{65}°\mathrm{28}'+\mathrm{k360}\right)\cup\left(\mathrm{65}°\mathrm{28}'+\mathrm{k360}°;\mathrm{90}°+\mathrm{k360}\right) \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{x}}\in\left(\mathrm{2};+\infty\right)\Leftrightarrow\mathrm{2}^{\boldsymbol{\mathrm{cost}}} >\mathrm{2}\Leftrightarrow\boldsymbol{\mathrm{cost}}>\mathrm{1} \\ $$$$\boldsymbol{\mathrm{inequality}}\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{roots}}\: \\ $$$$\boldsymbol{\mathrm{Thus}},\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{inequality}}\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{roots}}\:\boldsymbol{\mathrm{are}}: \\ $$$$\boldsymbol{\mathrm{t}}\in\left(−\mathrm{90}°+\boldsymbol{\mathrm{k}}\mathrm{360}°;−\mathrm{65}°\mathrm{28}'+\boldsymbol{\mathrm{k}}\mathrm{360}\right)\cup \\ $$$$\left(\mathrm{65}°\mathrm{28}'+\boldsymbol{\mathrm{k}}\mathrm{360}°;\mathrm{90}°+\boldsymbol{\mathrm{k}}\mathrm{360}°\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com