Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 111342 by pete last updated on 03/Sep/20

When the terms of a Geometric Progression(GP)  with common ratio r=2 is added to the corresponding terms  of an Arithmetic Provression (AP),  a new sequence is formed. If the first terms  of the GP and AP are the same and the first  three terms of the new sequence are  3, 7 and 11 respectively, find the n^(th)  term  of the seauence.

$$\mathrm{When}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Geometric}\:\mathrm{Progression}\left(\mathrm{GP}\right) \\ $$$$\mathrm{with}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{r}=\mathrm{2}\:\mathrm{is}\:\mathrm{added}\:\mathrm{to}\:\mathrm{the}\:\mathrm{corresponding}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{Arithmetic}\:\mathrm{Provression}\:\left(\mathrm{AP}\right), \\ $$$$\mathrm{a}\:\mathrm{new}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{formed}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{first}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{GP}\:\mathrm{and}\:\mathrm{AP}\:\mathrm{are}\:\mathrm{the}\:\mathrm{same}\:\mathrm{and}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{three}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{new}\:\mathrm{sequence}\:\mathrm{are} \\ $$$$\mathrm{3},\:\mathrm{7}\:\mathrm{and}\:\mathrm{11}\:\mathrm{respectively},\:\mathrm{find}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{seauence}. \\ $$

Answered by Rasheed.Sindhi last updated on 03/Sep/20

General term of new sequence      T_n  =ar^(n−1) +a+(n−1)d       =a{(2)^(n−1) +1}+(n−1)d  T_1 =a{(2)^(1−1) +1}+(1−1)d=3              =2a=3⇒a=3/2  T_2 =a{(2)^(2−1) +1}+(2−1)d=7       =(3/2)(3)+d=7        ⇒d=7−9/2=5/2  T_n =((3/2))(2^(n−1) +1)+(n−1)((5/2))        T_n =((3.2^(n−1) +5n−2)/2)  T_1 =((3.2^0 +3)/2)=3  T_2 =((3.2+8)/2)=7  T_3 =((3.2^(3−1) +5(3)−2)/2)=((12+13)/2)=((25)/2)                                                  ≠11  ⊚ ′More than sufficient′ data  ⊡Inconsistent data

$${General}\:{term}\:{of}\:{new}\:{sequence} \\ $$$$\:\:\:\:{T}_{{n}} \:={ar}^{{n}−\mathrm{1}} +{a}+\left({n}−\mathrm{1}\right){d} \\ $$$$\:\:\:\:\:={a}\left\{\left(\mathrm{2}\right)^{{n}−\mathrm{1}} +\mathrm{1}\right\}+\left({n}−\mathrm{1}\right){d} \\ $$$${T}_{\mathrm{1}} ={a}\left\{\left(\mathrm{2}\right)^{\mathrm{1}−\mathrm{1}} +\mathrm{1}\right\}+\left(\mathrm{1}−\mathrm{1}\right){d}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{a}=\mathrm{3}\Rightarrow{a}=\mathrm{3}/\mathrm{2} \\ $$$${T}_{\mathrm{2}} ={a}\left\{\left(\mathrm{2}\right)^{\mathrm{2}−\mathrm{1}} +\mathrm{1}\right\}+\left(\mathrm{2}−\mathrm{1}\right){d}=\mathrm{7} \\ $$$$\:\:\:\:\:=\left(\mathrm{3}/\mathrm{2}\right)\left(\mathrm{3}\right)+{d}=\mathrm{7} \\ $$$$\:\:\:\:\:\:\Rightarrow{d}=\mathrm{7}−\mathrm{9}/\mathrm{2}=\mathrm{5}/\mathrm{2} \\ $$$${T}_{{n}} =\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\left(\mathrm{2}^{{n}−\mathrm{1}} +\mathrm{1}\right)+\left({n}−\mathrm{1}\right)\left(\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:{T}_{{n}} =\frac{\mathrm{3}.\mathrm{2}^{{n}−\mathrm{1}} +\mathrm{5}{n}−\mathrm{2}}{\mathrm{2}} \\ $$$${T}_{\mathrm{1}} =\frac{\mathrm{3}.\mathrm{2}^{\mathrm{0}} +\mathrm{3}}{\mathrm{2}}=\mathrm{3} \\ $$$${T}_{\mathrm{2}} =\frac{\mathrm{3}.\mathrm{2}+\mathrm{8}}{\mathrm{2}}=\mathrm{7} \\ $$$${T}_{\mathrm{3}} =\frac{\mathrm{3}.\mathrm{2}^{\mathrm{3}−\mathrm{1}} +\mathrm{5}\left(\mathrm{3}\right)−\mathrm{2}}{\mathrm{2}}=\frac{\mathrm{12}+\mathrm{13}}{\mathrm{2}}=\frac{\mathrm{25}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\neq\mathrm{11} \\ $$$$\circledcirc\:'{More}\:{than}\:{sufficient}'\:{data} \\ $$$$\boxdot{Inconsistent}\:{data} \\ $$

Commented by Aina Samuel Temidayo last updated on 03/Sep/20

Please what do you mean by  inconsistent data?

$$\mathrm{Please}\:\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{by} \\ $$$$\mathrm{inconsistent}\:\mathrm{data}? \\ $$

Commented by Rasheed.Sindhi last updated on 03/Sep/20

Contrdiction between data.Like  here T_3 =11 is given but using  other data we calculate T_3 =25/2  T_3  same time can′t be equal to  two values!

$${Contrdiction}\:{between}\:{data}.{Like} \\ $$$${here}\:{T}_{\mathrm{3}} =\mathrm{11}\:{is}\:{given}\:{but}\:{using} \\ $$$${other}\:{data}\:{we}\:{calculate}\:{T}_{\mathrm{3}} =\mathrm{25}/\mathrm{2} \\ $$$${T}_{\mathrm{3}} \:{same}\:{time}\:{can}'{t}\:{be}\:{equal}\:{to} \\ $$$${two}\:{values}! \\ $$

Commented by Aina Samuel Temidayo last updated on 03/Sep/20

Ok. Does that make the  question incorrect?

$$\mathrm{Ok}.\:\mathrm{Does}\:\mathrm{that}\:\mathrm{make}\:\mathrm{the} \\ $$$$\mathrm{question}\:\mathrm{incorrect}? \\ $$

Commented by Rasheed.Sindhi last updated on 03/Sep/20

Of course!

$${Of}\:{course}! \\ $$

Commented by pete last updated on 03/Sep/20

I appreciate your time sir.

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com