Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 111208 by Aziztisffola last updated on 02/Sep/20

 let p a prime number s.t p≥7 and                     a=333......3_(p−1 times)    Show that 11∣a.

$$\:\mathrm{let}\:{p}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:\mathrm{s}.\mathrm{t}\:{p}\geqslant\mathrm{7}\:\mathrm{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=\underset{{p}−\mathrm{1}\:{times}} {\mathrm{333}......\mathrm{3}} \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:\mathrm{11}\mid{a}. \\ $$

Commented by mr W last updated on 02/Sep/20

p doesn′t need to be prime, p can be  any odd number p≥3.

$${p}\:{doesn}'{t}\:{need}\:{to}\:{be}\:{prime},\:{p}\:{can}\:{be} \\ $$$${any}\:{odd}\:{number}\:{p}\geqslant\mathrm{3}. \\ $$

Commented by mr W last updated on 02/Sep/20

p=odd number, say p=2n+1 with  n≥1.  a=3333..33_(2n times) =3×1111..11_(2n times)   =3×(11+1100+110000+...+1100..00)  =3×(1+100+10000+...+100..00)×11  ⇒11∣a

$${p}={odd}\:{number},\:{say}\:{p}=\mathrm{2}{n}+\mathrm{1}\:{with} \\ $$$${n}\geqslant\mathrm{1}. \\ $$$${a}=\underset{\mathrm{2}{n}\:{times}} {\mathrm{3333}..\mathrm{33}}=\mathrm{3}×\underset{\mathrm{2}{n}\:{times}} {\mathrm{1111}..\mathrm{11}} \\ $$$$=\mathrm{3}×\left(\mathrm{11}+\mathrm{1100}+\mathrm{110000}+...+\mathrm{1100}..\mathrm{00}\right) \\ $$$$=\mathrm{3}×\left(\mathrm{1}+\mathrm{100}+\mathrm{10000}+...+\mathrm{100}..\mathrm{00}\right)×\mathrm{11} \\ $$$$\Rightarrow\mathrm{11}\mid{a} \\ $$

Commented by Aziztisffola last updated on 02/Sep/20

yes sir thank you.

$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{thank}\:\mathrm{you}. \\ $$

Answered by Aziztisffola last updated on 02/Sep/20

My answer    a= 3+3×10+...+3×10^p      =3(1+10+10^2 +...+10^p )     =3(((10^(p+1) −1)/9))=((10^(p+1) −1)/3)  ⇒ 3a=10^(p+1) −1   10≡−1[11] ⇒10^(p+1) ≡1[11]  (p+1 is even)  ⇒ 10^(p+1) −1≡0[11]  ⇒ 3a≡0[11] ⇒11∣3a  ⇒^(3∧11=1)   11∣a

$$\mathrm{My}\:\mathrm{answer}\: \\ $$$$\:{a}=\:\mathrm{3}+\mathrm{3}×\mathrm{10}+...+\mathrm{3}×\mathrm{10}^{{p}} \\ $$$$\:\:\:=\mathrm{3}\left(\mathrm{1}+\mathrm{10}+\mathrm{10}^{\mathrm{2}} +...+\mathrm{10}^{{p}} \right) \\ $$$$\:\:\:=\mathrm{3}\left(\frac{\mathrm{10}^{{p}+\mathrm{1}} −\mathrm{1}}{\mathrm{9}}\right)=\frac{\mathrm{10}^{{p}+\mathrm{1}} −\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\:\mathrm{3}{a}=\mathrm{10}^{{p}+\mathrm{1}} −\mathrm{1} \\ $$$$\:\mathrm{10}\equiv−\mathrm{1}\left[\mathrm{11}\right]\:\Rightarrow\mathrm{10}^{{p}+\mathrm{1}} \equiv\mathrm{1}\left[\mathrm{11}\right]\:\:\left({p}+\mathrm{1}\:{is}\:{even}\right) \\ $$$$\Rightarrow\:\mathrm{10}^{{p}+\mathrm{1}} −\mathrm{1}\equiv\mathrm{0}\left[\mathrm{11}\right] \\ $$$$\Rightarrow\:\mathrm{3}{a}\equiv\mathrm{0}\left[\mathrm{11}\right]\:\Rightarrow\mathrm{11}\mid\mathrm{3a}\:\:\overset{\mathrm{3}\wedge\mathrm{11}=\mathrm{1}} {\Rightarrow}\:\:\mathrm{11}\mid{a} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com