Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111023 by mohammad17 last updated on 01/Sep/20

∫((sin(x))/(1+x^2 ))dx

$$\int\frac{{sin}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Commented by mohammad17 last updated on 01/Sep/20

help me sir

$${help}\:{me}\:{sir} \\ $$

Answered by mathdave last updated on 02/Sep/20

solution   series form of (1/(1+x^2 ))=(−1)^n Σ_(n=0) ^∞ x^(2n)   I=∫((sinx)/(1+x^2 ))dx=(−1)^n Σ_(n=0) ^∞ ∫x^(2n) sinxdx  using IBP  let u=x^(2n) ,du=2x^(2n) and  ∫dv=∫sinxdx,v=−cosx  but ∫udv=uv−∫vdu  I=(−1)^n Σ_(n=0) ^∞ [(−x^(2n) cosx+2∫x^(2n) cosxdx]  I=−(−1)^n Σ_(n=0) ^∞ x^(2n) cosx+2(−1)^n Σ_(n=0) ^∞ ∫x^(2n) cosxdx  I=−(−1)^n Σ_(n=0) ^∞ x^(2n) cosx+2(−1)^n Σ_(n=0) ^∞ [x^(2n) sinx−2∫x^(2n) sinxdx]  I=−(−1)^n Σ_(n=0) ^∞ x^(2n) cosx+2(−1)^n Σ_(n=0) ^∞ x^(2n) sinx−4I  I+4I=(−1)^n Σ_(n=0) ^∞ x^(2n) [2sinx−cosx]  ∵I=∫((sinx)/(1+x^2 ))dx=(((−1)^n Σ_(n=0) ^∞ x^(2n) )/5)[2sinx−cosx]  mathdave(02/09/2020)

$${solution}\: \\ $$$${series}\:{form}\:{of}\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }=\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \\ $$$${I}=\int\frac{\mathrm{sin}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int{x}^{\mathrm{2}{n}} \mathrm{sin}{xdx} \\ $$$${using}\:{IBP} \\ $$$${let}\:{u}={x}^{\mathrm{2}{n}} ,{du}=\mathrm{2}{x}^{\mathrm{2}{n}} {and}\:\:\int{dv}=\int\mathrm{sin}{xdx},{v}=−\mathrm{cos}{x} \\ $$$${but}\:\int{udv}={uv}−\int{vdu} \\ $$$${I}=\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left(−{x}^{\mathrm{2}{n}} \mathrm{cos}{x}+\mathrm{2}\int{x}^{\mathrm{2}{n}} \mathrm{cos}{xdx}\right]\right. \\ $$$${I}=−\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \mathrm{cos}{x}+\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int{x}^{\mathrm{2}{n}} \mathrm{cos}{xdx} \\ $$$${I}=−\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \mathrm{cos}{x}+\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[{x}^{\mathrm{2}{n}} \mathrm{sin}{x}−\mathrm{2}\int{x}^{\mathrm{2}{n}} \mathrm{sin}{xdx}\right] \\ $$$${I}=−\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \mathrm{cos}{x}+\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \mathrm{sin}{x}−\mathrm{4}{I} \\ $$$${I}+\mathrm{4}{I}=\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} \left[\mathrm{2sin}{x}−\mathrm{cos}{x}\right] \\ $$$$\because{I}=\int\frac{\mathrm{sin}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} }{\mathrm{5}}\left[\mathrm{2sin}{x}−\mathrm{cos}{x}\right] \\ $$$${mathdave}\left(\mathrm{02}/\mathrm{09}/\mathrm{2020}\right) \\ $$

Commented by mohammad17 last updated on 02/Sep/20

you are an awesome person thank you sir

$${you}\:{are}\:{an}\:{awesome}\:{person}\:{thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com