Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110897 by bemath last updated on 31/Aug/20

(1)4x−4 ≤ ∣x^2 −3x+2 ∣   find the solution set   (2) ((1+cos ((α/2))−sin ((α/2)))/(1−cos ((α/2))−sin ((α/2))))=?

$$\left(\mathrm{1}\right)\mathrm{4x}−\mathrm{4}\:\leqslant\:\mid\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{2}\:\mid\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\: \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}+\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}=? \\ $$

Answered by john santu last updated on 31/Aug/20

Answered by Dwaipayan Shikari last updated on 31/Aug/20

((2cos^2 (α/4)−2sin(α/4)cos(α/4))/(2sin^2 (α/4)−2sin(α/4)cos(α/4)))=((2cos(α/4))/(2sin(α/4))).(((cos(α/4)−sin(α/4))/(sin(α/4)−cos(α/4))))=−cot(α/4)

$$\frac{\mathrm{2}{cos}^{\mathrm{2}} \frac{\alpha}{\mathrm{4}}−\mathrm{2}{sin}\frac{\alpha}{\mathrm{4}}{cos}\frac{\alpha}{\mathrm{4}}}{\mathrm{2}{sin}^{\mathrm{2}} \frac{\alpha}{\mathrm{4}}−\mathrm{2}{sin}\frac{\alpha}{\mathrm{4}}{cos}\frac{\alpha}{\mathrm{4}}}=\frac{\mathrm{2}{cos}\frac{\alpha}{\mathrm{4}}}{\mathrm{2}{sin}\frac{\alpha}{\mathrm{4}}}.\left(\frac{{cos}\frac{\alpha}{\mathrm{4}}−{sin}\frac{\alpha}{\mathrm{4}}}{{sin}\frac{\alpha}{\mathrm{4}}−{cos}\frac{\alpha}{\mathrm{4}}}\right)=−{cot}\frac{\alpha}{\mathrm{4}} \\ $$

Answered by bemath last updated on 31/Aug/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com