Question Number 110136 by qwerty111 last updated on 27/Aug/20 | ||
Answered by $@y@m last updated on 27/Aug/20 | ||
$${Let}\:\mathrm{2020}^{{m}} ={a}\: \\ $$$${Given}, \\ $$$${a}+\frac{\mathrm{1}}{{a}}=\mathrm{3}\:.....\left(\mathrm{1}\right) \\ $$$${Squarring}\:{both}\:{sides}, \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\mathrm{2}=\mathrm{9} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }=\mathrm{7} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }−\mathrm{2}=\mathrm{5} \\ $$$$\Rightarrow{a}−\frac{\mathrm{1}}{{a}}=\sqrt{\mathrm{5}}\:...\left(\mathrm{2}\right) \\ $$$${Cubing}\:{both}\:{sides}, \\ $$$$\Rightarrow\left({a}−\frac{\mathrm{1}}{{a}}\right)^{\mathrm{3}} =\sqrt{\mathrm{5}}\:^{\mathrm{3}} \\ $$$$\Rightarrow{a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{3}\sqrt{\mathrm{5}}=\mathrm{5}\sqrt{\mathrm{5}} \\ $$$$\Rightarrow{a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }=\mathrm{8}\sqrt{\mathrm{5}}\:...\left(\mathrm{3}\right) \\ $$$${Cubimg}\:{both}\:{sides}\:{of}\:\left(\mathrm{1}\right), \\ $$$${a}^{\mathrm{3}} +\frac{\mathrm{1}}{{a}^{\mathrm{3}} }+\mathrm{3}×\mathrm{3}=\mathrm{27} \\ $$$${a}^{\mathrm{3}} +\frac{\mathrm{1}}{{a}^{\mathrm{3}} }=\mathrm{18}\:...\left(\mathrm{4}\right) \\ $$$${by}\:\left(\mathrm{3}\right)×\left(\mathrm{4}\right), \\ $$$${a}^{\mathrm{6}} −\frac{\mathrm{1}}{{a}^{\mathrm{6}} }=\mathrm{144}\sqrt{\mathrm{5}}\:....\left(\mathrm{5}\right) \\ $$$${By}\:\left(\mathrm{5}\right)\boldsymbol{\div}\left(\mathrm{2}\right) \\ $$$$\frac{{a}^{\mathrm{6}} −\frac{\mathrm{1}}{{a}^{\mathrm{6}} }}{{a}−\frac{\mathrm{1}}{{a}}}=\mathrm{144} \\ $$$$\therefore\sqrt{\frac{{a}^{\mathrm{6}} −\frac{\mathrm{1}}{{a}^{\mathrm{6}} }}{{a}−\frac{\mathrm{1}}{{a}}}}=\mathrm{12} \\ $$ | ||
Answered by Sarah85 last updated on 27/Aug/20 | ||
$${x}^{{m}} +{x}^{−{m}} =\mathrm{3} \\ $$$${x}^{\mathrm{2}{m}} +\mathrm{1}=\mathrm{3}{x}^{{m}} \\ $$$${x}^{\mathrm{2}{m}} −\mathrm{3}{x}^{{m}} +\mathrm{1}=\mathrm{0} \\ $$$${x}^{{m}} =\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}^{\mathrm{6}{m}} =\left(\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{6}} =\mathrm{161}\pm\mathrm{72}\sqrt{\mathrm{5}} \\ $$$${x}^{\mathrm{6}{m}} −{x}^{−\mathrm{6}{m}} =\pm\mathrm{144}\sqrt{\mathrm{5}} \\ $$$${x}^{{m}} −{x}^{−{m}} =\pm\sqrt{\mathrm{5}} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{12}\:\mathrm{independent}\:\mathrm{of}\:{x} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 27/Aug/20 | ||
$$\mathrm{2020}={a} \\ $$$${a}^{{m}} +{a}^{−{m}} =\mathrm{3}\:,\sqrt{\frac{{a}^{\mathrm{6}{m}} −{a}^{−\mathrm{6}{m}} }{{a}^{{m}} −{a}^{−{m}} }}=? \\ $$$${a}^{\mathrm{2}{m}} +{a}^{−\mathrm{2}{m}} +\mathrm{2}=\mathrm{9} \\ $$$${a}^{\mathrm{2}{m}} +{a}^{−\mathrm{2}{m}} =\mathrm{7} \\ $$$${a}^{\mathrm{4}{m}} +{a}^{−\mathrm{4}{m}} =\mathrm{47} \\ $$$$\sqrt{\frac{{a}^{\mathrm{6}{m}} −{a}^{−\mathrm{6}{m}} }{{a}^{{m}} −{a}^{−{m}} }}= \\ $$$$\sqrt{\frac{\left({a}^{{m}} −{a}^{−{m}} \right)\left({a}^{{m}} +{a}^{−{m}} \right)\left({a}^{\mathrm{4}{m}} +{a}^{−\mathrm{4}{m}} +\mathrm{1}\right)}{{a}^{{m}} −{a}^{−{m}} }\:} \\ $$$$\sqrt{\left({a}^{{m}} +{a}^{−{m}} \right)\left({a}^{\mathrm{4}{m}} +{a}^{−\mathrm{4}{m}} +\mathrm{1}\right)} \\ $$$$\sqrt{\left(\mathrm{3}\right)\left(\mathrm{47}+\mathrm{1}\right)} \\ $$$$\sqrt{\left(\mathrm{3}\right)\left(\mathrm{48}\right)} \\ $$$$\mathrm{12}\:\:\:{for}\:{any}\:{value}\:{of}\:{a} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 27/Aug/20 | ||
$$\mathrm{2020}={a} \\ $$$${a}^{{m}} +{a}^{−{m}} =\mathrm{3}\:,\sqrt{\frac{{a}^{\mathrm{6}{m}} −{a}^{−\mathrm{6}{m}} }{{a}^{{m}} −{a}^{−{m}} }} \\ $$$${a}^{\mathrm{2}{m}} +{a}^{−\mathrm{2}{m}} =\mathrm{7} \\ $$$${a}^{\mathrm{4}{m}} +{a}^{−\mathrm{4}{m}} =\mathrm{47} \\ $$$$=\sqrt{\frac{{a}^{\mathrm{6}{m}} −{a}^{−\mathrm{6}{m}} }{{a}^{{m}} −{a}^{−{m}} }×\frac{{a}^{{m}} +{a}^{−{m}} }{{a}^{{m}} +{a}^{−{m}} }} \\ $$$$=\sqrt{\frac{\mathrm{3}\left({a}^{\mathrm{6}{m}} −{a}^{−\mathrm{6}{m}} \right)}{{a}^{\mathrm{2}{m}} −{a}^{−\mathrm{2}{m}} }} \\ $$$$=\sqrt{\frac{\mathrm{3}\left({a}^{\mathrm{2}{m}} −{a}^{−\mathrm{2}{m}} \right)\left({a}^{\mathrm{4}{m}} +{a}^{−\mathrm{4}{m}} +\mathrm{1}\right)}{{a}^{\mathrm{2}{m}} −{a}^{−\mathrm{2}{m}} }} \\ $$$$=\sqrt{\mathrm{3}\left({a}^{\mathrm{4}{m}} +{a}^{−\mathrm{4}{m}} +\mathrm{1}\right)} \\ $$$$=\sqrt{\mathrm{3}\left(\mathrm{47}+\mathrm{1}\right)}=\mathrm{12} \\ $$ | ||