Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 109950 by 675480065 last updated on 26/Aug/20

Answered by Aziztisffola last updated on 26/Aug/20

 (i) (x−1)^2 >0 ⇒ x^2 −2x+1>0   ⇒x^2 >2x−1 ⇒_(2x−1>1) ^(x>1)     (x^2 /(2x−1))>1  ⇒ g(x)>1   (ii) w_(n+1) =ln(v_(n+1) )=ln(1−(1/u_(n+1) ))   =ln(1−((2u_n −1)/(u_n ^2  )))=ln(((u_n ^2 −2u_n +1)/u_n ^2 ))   =ln((((u_n −1)^2 )/u_n ^2 ))=ln((((u_n −1)/u_n ))^2 )   =2ln(((u_n −1)/u_n ))=2ln(v_n )=2w_n   ⇒ ∀n∈N  : w_(n+1) =2w_n   ⇒ (w_n ) is geometric sequence with   ratio q=2 and first term w_0 =ln(v_0 )   w_0 =ln(((u_0 −1)/u_0 ))=ln((1/2))=−ln2

$$\:\left(\mathrm{i}\right)\:\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} >\mathrm{0}\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{1}>\mathrm{0} \\ $$$$\:\Rightarrow\mathrm{x}^{\mathrm{2}} >\mathrm{2x}−\mathrm{1}\:\underset{\mathrm{2x}−\mathrm{1}>\mathrm{1}} {\overset{\mathrm{x}>\mathrm{1}} {\Rightarrow}}\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2x}−\mathrm{1}}>\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{g}\left(\mathrm{x}\right)>\mathrm{1} \\ $$$$\:\left(\mathrm{ii}\right)\:\mathrm{w}_{\mathrm{n}+\mathrm{1}} =\mathrm{ln}\left(\mathrm{v}_{\mathrm{n}+\mathrm{1}} \right)=\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }\right) \\ $$$$\:=\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{2u}_{\mathrm{n}} −\mathrm{1}}{\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} \:}\right)=\mathrm{ln}\left(\frac{\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} −\mathrm{2u}_{\mathrm{n}} +\mathrm{1}}{\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} }\right) \\ $$$$\:=\mathrm{ln}\left(\frac{\left(\mathrm{u}_{\mathrm{n}} −\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} }\right)=\mathrm{ln}\left(\left(\frac{\mathrm{u}_{\mathrm{n}} −\mathrm{1}}{\mathrm{u}_{\mathrm{n}} }\right)^{\mathrm{2}} \right) \\ $$$$\:=\mathrm{2ln}\left(\frac{\mathrm{u}_{\mathrm{n}} −\mathrm{1}}{\mathrm{u}_{\mathrm{n}} }\right)=\mathrm{2ln}\left(\mathrm{v}_{\mathrm{n}} \right)=\mathrm{2w}_{\mathrm{n}} \\ $$$$\Rightarrow\:\forall\mathrm{n}\in\mathbb{N}\:\::\:\mathrm{w}_{\mathrm{n}+\mathrm{1}} =\mathrm{2w}_{\mathrm{n}} \\ $$$$\Rightarrow\:\left(\mathrm{w}_{\mathrm{n}} \right)\:\mathrm{is}\:\mathrm{geometric}\:\mathrm{sequence}\:\mathrm{with} \\ $$$$\:\mathrm{ratio}\:\mathrm{q}=\mathrm{2}\:\mathrm{and}\:\mathrm{first}\:\mathrm{term}\:\mathrm{w}_{\mathrm{0}} =\mathrm{ln}\left(\mathrm{v}_{\mathrm{0}} \right) \\ $$$$\:\mathrm{w}_{\mathrm{0}} =\mathrm{ln}\left(\frac{\mathrm{u}_{\mathrm{0}} −\mathrm{1}}{\mathrm{u}_{\mathrm{0}} }\right)=\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{ln2}\: \\ $$

Answered by Aziztisffola last updated on 26/Aug/20

 (iii) w_n =−ln(2)×2^n =ln(v_n )  ⇒v_n =e^(−ln2×2^n ) =(e^(ln2) )^(−2^n ) =2^(−2^n )

$$\:\left(\mathrm{iii}\right)\:\mathrm{w}_{\mathrm{n}} =−\mathrm{ln}\left(\mathrm{2}\right)×\mathrm{2}^{\mathrm{n}} =\mathrm{ln}\left(\mathrm{v}_{\mathrm{n}} \right) \\ $$$$\Rightarrow\mathrm{v}_{\mathrm{n}} =\mathrm{e}^{−\mathrm{ln2}×\mathrm{2}^{\mathrm{n}} } =\left(\mathrm{e}^{\mathrm{ln2}} \right)^{−\mathrm{2}^{\mathrm{n}} } =\mathrm{2}^{−\mathrm{2}^{\mathrm{n}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com