Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 108870 by 150505R last updated on 19/Aug/20

Commented by Dwaipayan Shikari last updated on 19/Aug/20

cot(π/(2n))

$${cot}\frac{\pi}{\mathrm{2}{n}} \\ $$

Answered by Ar Brandon last updated on 19/Aug/20

cos((πk)/n)+isin((πk)/n)=e^(i((πk)/n))   ⇒Σ_(k=1) ^(n−1) sin((πk)/n)=ImΣ_(k=1) ^(n−1) e^(i((πk)/n))                             =Im{((e^(i(π/n)) (1−e^(iπ) ))/(1−e^((iπ)/n) ))}

$$\mathrm{cos}\frac{\pi\mathrm{k}}{\mathrm{n}}+\mathrm{isin}\frac{\pi\mathrm{k}}{\mathrm{n}}=\mathrm{e}^{\mathrm{i}\frac{\pi\mathrm{k}}{\mathrm{n}}} \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{sin}\frac{\pi\mathrm{k}}{\mathrm{n}}=\mathrm{Im}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\mathrm{e}^{\mathrm{i}\frac{\pi\mathrm{k}}{\mathrm{n}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{Im}\left\{\frac{\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{n}}} \left(\mathrm{1}−\mathrm{e}^{\mathrm{i}\pi} \right)}{\mathrm{1}−\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{n}}} }\right\} \\ $$

Answered by Dwaipayan Shikari last updated on 19/Aug/20

Σ_(k=0) ^n sinkθ       (  θ= ((π/n)))  sin0+sinθ+sin2θ+....+n  (1/(2sin(θ/2)))(cos(θ/2)−cos(θ/2)+cos(θ/2)−cos((3θ)/2)+cos((3θ)/2)−cos((5θ)/2)+..cos((2n−1)/2)θ−cos((2n+1)/2)θ)  (1/(2sin(θ/2)))(cos(θ/2)−cos((2n+1)/2)θ)  (1/(sin(θ/2)))(sin((n+1)/2)θ sin(n/2)θ)=(1/(sin(π/(2n))))sin((π/(2n))+(π/2)).sin(π/2)=cot(π/(2n))   (θ=(π/n))

$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{sink}\theta\:\:\:\:\:\:\:\left(\:\:\theta=\:\left(\frac{\pi}{{n}}\right)\right) \\ $$$${sin}\mathrm{0}+{sin}\theta+{sin}\mathrm{2}\theta+....+{n} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}}\left({cos}\frac{\theta}{\mathrm{2}}−{cos}\frac{\theta}{\mathrm{2}}+{cos}\frac{\theta}{\mathrm{2}}−{cos}\frac{\mathrm{3}\theta}{\mathrm{2}}+{cos}\frac{\mathrm{3}\theta}{\mathrm{2}}−{cos}\frac{\mathrm{5}\theta}{\mathrm{2}}+..{cos}\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\theta−{cos}\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}\theta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{\theta}{\mathrm{2}}}\left({cos}\frac{\theta}{\mathrm{2}}−{cos}\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}\theta\right) \\ $$$$\frac{\mathrm{1}}{{sin}\frac{\theta}{\mathrm{2}}}\left({sin}\frac{{n}+\mathrm{1}}{\mathrm{2}}\theta\:{sin}\frac{{n}}{\mathrm{2}}\theta\right)=\frac{\mathrm{1}}{{sin}\frac{\pi}{\mathrm{2}{n}}}{sin}\left(\frac{\pi}{\mathrm{2}{n}}+\frac{\pi}{\mathrm{2}}\right).{sin}\frac{\pi}{\mathrm{2}}={cot}\frac{\pi}{\mathrm{2}{n}}\:\:\:\left(\theta=\frac{\pi}{{n}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com