Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 10864 by chux last updated on 28/Feb/17

Answered by ridwan balatif last updated on 28/Feb/17

first step  (((sinx)/(cosx)))^2 =(tanx)^2   ((sin^2 x)/(cos^2 x))=tan^2 x  ((1−cos^2 x)/(cos^2 x))=tan^2 x  sec^2 x−1=tan^2 x   second step (remember ∫sec^2 xdx=tanx+C  ∫tan^2 xdx=∫(sec^2 x−1)dx                         =∫sec^2 xdx−∫dx                         =tanx − x+C

$$\mathrm{first}\:\mathrm{step} \\ $$$$\left(\frac{\mathrm{sinx}}{\mathrm{cosx}}\right)^{\mathrm{2}} =\left(\mathrm{tanx}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}=\mathrm{tan}^{\mathrm{2}} \mathrm{x} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}=\mathrm{tan}^{\mathrm{2}} \mathrm{x} \\ $$$$\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{1}=\mathrm{tan}^{\mathrm{2}} \mathrm{x} \\ $$$$\:\mathrm{second}\:\mathrm{step}\:\left(\mathrm{remember}\:\int\mathrm{sec}^{\mathrm{2}} \mathrm{xdx}=\mathrm{tanx}+\mathrm{C}\right. \\ $$$$\int\mathrm{tan}^{\mathrm{2}} \mathrm{xdx}=\int\left(\mathrm{sec}^{\mathrm{2}} \mathrm{x}−\mathrm{1}\right)\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\int\mathrm{sec}^{\mathrm{2}} \mathrm{xdx}−\int\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{tanx}\:−\:\mathrm{x}+\mathrm{C} \\ $$$$ \\ $$$$ \\ $$

Commented by chux last updated on 28/Feb/17

tanx boss...... buh can it be integrated  by part.

$$\mathrm{tanx}\:\mathrm{boss}......\:\mathrm{buh}\:\mathrm{can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{integrated} \\ $$$$\mathrm{by}\:\mathrm{part}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com