Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107993 by mohammad17 last updated on 13/Aug/20

Answered by hgrocks last updated on 13/Aug/20

∞

$$\infty \\ $$

Commented by mohammad17 last updated on 13/Aug/20

sir i want steb by steb

$${sir}\:{i}\:{want}\:{steb}\:{by}\:{steb}\: \\ $$

Answered by hgrocks last updated on 13/Aug/20

cosx − x! = −x! as x→∞  3^x −4^x  = 4^x (1−((3/4))^x )                  = −4^x  {as x→∞ ((3/4))^x = 0}  So L = lim_(x→∞) ((−x!)/(−4^x ))              = (1/4).(2/4).(3/4).(4/4)............(x/4)              = lim_(x→∞)  ((x/(4e)))^x (√(2πx))             = ∞

$$\mathrm{cosx}\:−\:\mathrm{x}!\:=\:−\mathrm{x}!\:\mathrm{as}\:\mathrm{x}\rightarrow\infty \\ $$$$\mathrm{3}^{\mathrm{x}} −\mathrm{4}^{\mathrm{x}} \:=\:\mathrm{4}^{\mathrm{x}} \left(\mathrm{1}−\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{x}} \right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{4}^{\mathrm{x}} \:\left\{\mathrm{as}\:\mathrm{x}\rightarrow\infty\:\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{x}} =\:\mathrm{0}\right\} \\ $$$$\mathrm{So}\:\mathrm{L}\:=\:\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \frac{−\mathrm{x}!}{−\mathrm{4}^{\mathrm{x}} }\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{2}}{\mathrm{4}}.\frac{\mathrm{3}}{\mathrm{4}}.\frac{\mathrm{4}}{\mathrm{4}}............\frac{\mathrm{x}}{\mathrm{4}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \:\left(\frac{\mathrm{x}}{\mathrm{4e}}\right)^{\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\infty \\ $$

Commented by mohammad17 last updated on 13/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by mathmax by abdo last updated on 13/Aug/20

let f(x) =((cosx−x!)/(3^x −4^x )) ⇒f(x) =((cosx−x!)/(4^x ( ((3/4))^x −1))) =((x!(((cosx)/(x!))−1))/(4^x (((3/4))^x −1)))  ⇒lim_(x→+∞) f(x) =lim_(x→+∞) ((−x!)/(−4^x )) =lim_(x→+∞)   ((x^x  e^(−x) (√(2πx)))/4^x )  =lim_(x→+∞)   ((x/4))^x  e^(−x) (√(2πx))=lim_(x→+∞)  e^(xln((x/4))−x) (√(2πx))=+∞

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{cosx}−\mathrm{x}!}{\mathrm{3}^{\mathrm{x}} −\mathrm{4}^{\mathrm{x}} }\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{cosx}−\mathrm{x}!}{\mathrm{4}^{\mathrm{x}} \left(\:\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{x}} −\mathrm{1}\right)}\:=\frac{\mathrm{x}!\left(\frac{\mathrm{cosx}}{\mathrm{x}!}−\mathrm{1}\right)}{\mathrm{4}^{\mathrm{x}} \left(\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{x}} −\mathrm{1}\right)} \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \frac{−\mathrm{x}!}{−\mathrm{4}^{\mathrm{x}} }\:=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\:\frac{\mathrm{x}^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}}{\mathrm{4}^{\mathrm{x}} } \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\:\left(\frac{\mathrm{x}}{\mathrm{4}}\right)^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\mathrm{e}^{\mathrm{xln}\left(\frac{\mathrm{x}}{\mathrm{4}}\right)−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}=+\infty \\ $$

Commented by mohammad17 last updated on 13/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 13/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com