Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 107451 by mr W last updated on 11/Aug/20

How many words can you form using  the letters  in UNUSUALLY  such that no same letters are  next  to each other?    [Answer: 10200]

$${How}\:{many}\:{words}\:{can}\:{you}\:{form}\:{using} \\ $$$${the}\:{letters}\:\:{in}\:\boldsymbol{{UNUSUALLY}} \\ $$$${such}\:{that}\:{no}\:{same}\:{letters}\:{are}\:\:{next} \\ $$$${to}\:{each}\:{other}? \\ $$$$ \\ $$$$\left[{Answer}:\:\mathrm{10200}\right] \\ $$

Commented by I want to learn more last updated on 11/Aug/20

Please i will love to see the workings sir. Please

$$\mathrm{Please}\:\mathrm{i}\:\mathrm{will}\:\mathrm{love}\:\mathrm{to}\:\mathrm{see}\:\mathrm{the}\:\mathrm{workings}\:\mathrm{sir}.\:\mathrm{Please} \\ $$

Answered by mr W last updated on 11/Aug/20

UUU ⇒□  NSAYLL ⇒■  □■□■□■□■□■□■□  to arrange ■ there are ((6!)/(2!)) ways  to place 3 U in □ there are C_3 ^7  ways  ⇒C_3 ^7 ×((6!)/(2!)) words  inclusive words with both L together!    UUU ⇒□  NSAY(LL) ⇒■ with both L together  □■□■□■□■□■□  to arrange ■ there are 5! ways  to place 3 U in □ there are C_3 ^6  ways  ⇒C_3 ^6 ×5! words    requested result:  C_3 ^7 ×((6!)/(2!))−C_3 ^6 ×5!=10200 words

$${UUU}\:\Rightarrow\Box \\ $$$${NSAYLL}\:\Rightarrow\blacksquare \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box \\ $$$${to}\:{arrange}\:\blacksquare\:{there}\:{are}\:\frac{\mathrm{6}!}{\mathrm{2}!}\:{ways} \\ $$$${to}\:{place}\:\mathrm{3}\:{U}\:{in}\:\Box\:{there}\:{are}\:{C}_{\mathrm{3}} ^{\mathrm{7}} \:{ways} \\ $$$$\Rightarrow{C}_{\mathrm{3}} ^{\mathrm{7}} ×\frac{\mathrm{6}!}{\mathrm{2}!}\:{words} \\ $$$${inclusive}\:{words}\:{with}\:{both}\:{L}\:{together}! \\ $$$$ \\ $$$${UUU}\:\Rightarrow\Box \\ $$$${NSAY}\left({LL}\right)\:\Rightarrow\blacksquare\:{with}\:{both}\:{L}\:{together} \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box \\ $$$${to}\:{arrange}\:\blacksquare\:{there}\:{are}\:\mathrm{5}!\:{ways} \\ $$$${to}\:{place}\:\mathrm{3}\:{U}\:{in}\:\Box\:{there}\:{are}\:{C}_{\mathrm{3}} ^{\mathrm{6}} \:{ways} \\ $$$$\Rightarrow{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{5}!\:{words} \\ $$$$ \\ $$$${requested}\:{result}: \\ $$$${C}_{\mathrm{3}} ^{\mathrm{7}} ×\frac{\mathrm{6}!}{\mathrm{2}!}−{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{5}!=\mathrm{10200}\:{words} \\ $$

Commented by I want to learn more last updated on 11/Aug/20

Wow,   thanks sir.

$$\mathrm{Wow},\:\:\:\mathrm{thanks}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com