Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 107320 by pticantor last updated on 10/Aug/20

let x,y,z be a complex numbers  as ∣x∣=∣y∣=∣z∣=1   { ((x+y+z=1)),((xyz=1)) :}  calcul (1/x)+(1/y)+(1/z)=?    x=? y=? z=?  please i need a help

$${let}\:{x},{y},{z}\:{be}\:{a}\:{complex}\:{numbers} \\ $$$${as}\:\mid{x}\mid=\mid{y}\mid=\mid{z}\mid=\mathrm{1} \\ $$$$\begin{cases}{{x}+{y}+{z}=\mathrm{1}}\\{{xyz}=\mathrm{1}}\end{cases} \\ $$$${calcul}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=? \\ $$$$\:\:{x}=?\:{y}=?\:{z}=? \\ $$$${please}\:{i}\:{need}\:{a}\:{help} \\ $$

Commented by bemath last updated on 10/Aug/20

(x+y+z)^2 =x^2 +y^2 +z^2 +2(xy+xz+yz)  x^2 +y^2 +z^2 =1−2(xy+xz+yz)  (1/x)+(1/y)+(1/z)=((x+y)/(xy))+(1/z)=((xz+yz+xy)/(xyz))  (1/x)+(1/y)+(1/z)= xy+xz+yz                          = ((1−(x^2 +y^2 +z^2 ))/2)  need more information

$$\left({x}+{y}+{z}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}\left({xy}+{xz}+{yz}\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{1}−\mathrm{2}\left({xy}+{xz}+{yz}\right) \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\frac{{x}+{y}}{{xy}}+\frac{\mathrm{1}}{{z}}=\frac{{xz}+{yz}+{xy}}{{xyz}} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\:{xy}+{xz}+{yz} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$${need}\:{more}\:{information} \\ $$

Commented by pticantor last updated on 10/Aug/20

yes sir ∣x∣=∣y∣=∣z∣=1

$${yes}\:{sir}\:\mid{x}\mid=\mid{y}\mid=\mid{z}\mid=\mathrm{1} \\ $$

Commented by bemath last updated on 10/Aug/20

if ∣x∣=∣y∣=∣z∣=1   (1/x)+(1/y)+(1/z)=((1−3)/2)=−1

$${if}\:\mid{x}\mid=\mid{y}\mid=\mid{z}\mid=\mathrm{1}\: \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}−\mathrm{3}}{\mathrm{2}}=−\mathrm{1} \\ $$

Commented by pticantor last updated on 10/Aug/20

how sir ???  we have x^2 # ∣x∣

$${how}\:{sir}\:??? \\ $$$${we}\:{have}\:{x}^{\mathrm{2}} #\:\mid{x}\mid \\ $$

Commented by bemath last updated on 10/Aug/20

if ∣x∣ = 1 it does mean → { ((x=−1 or)),((x=1)) :}  or x^2 =1

$${if}\:\mid{x}\mid\:=\:\mathrm{1}\:{it}\:{does}\:{mean}\:\rightarrow\begin{cases}{{x}=−\mathrm{1}\:{or}}\\{{x}=\mathrm{1}}\end{cases} \\ $$$${or}\:{x}^{\mathrm{2}} =\mathrm{1} \\ $$

Commented by Her_Majesty last updated on 10/Aug/20

∣x∣ ⇒ x=cosθ+isinθ=e^(iθ)

$$\mid{x}\mid\:\Rightarrow\:{x}={cos}\theta+{isin}\theta={e}^{{i}\theta} \\ $$

Answered by Her_Majesty last updated on 10/Aug/20

e^(i(α+β+γ)) =1 ⇒ α+β+γ=0 ⇔ γ=−(α+β)  e^(iα) +e^(iβ) +e^(iγ) =1  ⇒  cosα+cosβ+cos(α+β)=1  sinα+sinβ−sin(α+β)=0  ⇒ if α<β<γ: α=−π/2 β=0 γ=π/2  ⇒ x=−i y=1 z=i  (1/x)+(1/y)+(1/z)=1

$${e}^{{i}\left(\alpha+\beta+\gamma\right)} =\mathrm{1}\:\Rightarrow\:\alpha+\beta+\gamma=\mathrm{0}\:\Leftrightarrow\:\gamma=−\left(\alpha+\beta\right) \\ $$$${e}^{{i}\alpha} +{e}^{{i}\beta} +{e}^{{i}\gamma} =\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{cos}\alpha+{cos}\beta+{cos}\left(\alpha+\beta\right)=\mathrm{1} \\ $$$${sin}\alpha+{sin}\beta−{sin}\left(\alpha+\beta\right)=\mathrm{0} \\ $$$$\Rightarrow\:{if}\:\alpha<\beta<\gamma:\:\alpha=−\pi/\mathrm{2}\:\beta=\mathrm{0}\:\gamma=\pi/\mathrm{2} \\ $$$$\Rightarrow\:{x}=−{i}\:{y}=\mathrm{1}\:{z}={i} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{1} \\ $$

Commented by bemath last updated on 10/Aug/20

how ∣x∣=1 ⇒ x=−i . impossible  ∣x∣^2 =1^2 ⇒ x^2 =1  but if x=−i ⇒x^2 =i^2 =−1

$${how}\:\mid{x}\mid=\mathrm{1}\:\Rightarrow\:{x}=−{i}\:.\:{impossible} \\ $$$$\mid{x}\mid^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} \Rightarrow\:{x}^{\mathrm{2}} =\mathrm{1} \\ $$$${but}\:{if}\:{x}=−{i}\:\Rightarrow{x}^{\mathrm{2}} ={i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$ \\ $$

Commented by Her_Majesty last updated on 10/Aug/20

you′re wrong  ∣a+bi∣=(√(a^2 +b^2 ))  ∣0±1i∣=(√(0^2 +1^2 ))=1

$${you}'{re}\:{wrong} \\ $$$$\mid{a}+{bi}\mid=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\mid\mathrm{0}\pm\mathrm{1}{i}\mid=\sqrt{\mathrm{0}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }=\mathrm{1} \\ $$

Commented by Her_Majesty last updated on 10/Aug/20

who marked this as inappropriate?  the question says “x y z are complex numbers”  z=re^(iθ) =rcosθ+irsinθ=a+bi with r∈R^+   ∣z∣=r=(√(a^2 +b^2 ))  if you do not know this, learn it right now!

$${who}\:{marked}\:{this}\:{as}\:{inappropriate}? \\ $$$${the}\:{question}\:{says}\:``{x}\:{y}\:{z}\:{are}\:{complex}\:{numbers}'' \\ $$$${z}={re}^{{i}\theta} ={rcos}\theta+{irsin}\theta={a}+{bi}\:{with}\:{r}\in\mathbb{R}^{+} \\ $$$$\mid{z}\mid={r}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${if}\:{you}\:{do}\:{not}\:{know}\:{this},\:{learn}\:{it}\:{right}\:{now}! \\ $$

Commented by bemath last updated on 10/Aug/20

wow .... I don't know who did that action.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com