Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 106815 by pticantor last updated on 07/Aug/20

   please help me to show  that  the equation    X^n +aX+c=0 can not have  more than 3 reals solutions

$$\:\:\:\boldsymbol{{please}}\:\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{to}}\:\boldsymbol{{show}} \\ $$$$\boldsymbol{{that}}\:\:\boldsymbol{{the}}\:\boldsymbol{{equation}}\: \\ $$$$\:\boldsymbol{{X}}^{\boldsymbol{{n}}} +\boldsymbol{{aX}}+\boldsymbol{{c}}=\mathrm{0}\:\boldsymbol{{can}}\:\boldsymbol{{not}}\:\boldsymbol{{have}} \\ $$$$\boldsymbol{{more}}\:\boldsymbol{{than}}\:\mathrm{3}\:\boldsymbol{{reals}}\:\boldsymbol{{solutions}} \\ $$$$ \\ $$

Answered by 1549442205PVT last updated on 07/Aug/20

f(X)=X^n +aX+c⇒f ′(X)=nX^(n−1) +a(1)  i)The n odd ⇒n=2k+1  (1)⇔(2k+1)X^(2k) =−a(2)  +If a>0 then (2) has no roots  ⇒f(X) has one unique root since f(X)  is increasing function  +If a=0⇒f(X) has only root x=^(2k+1) (√(−c))  +If a<0 then (2) has two roots  X=±^(2k) (√((−a)/(2k+1)))  ⇒f(X) has no more three roots  ii)The n even⇒n=2k.Then  (1)⇔2kX^(2k−1) =−a⇔X=^(2k−1) (√((−a)/(2k)))  is the unique root  ⇒f(X) has no more two roots  Thus,in all cases we see that f(X) has  no more three solutions (q.e.d)  Note:Here we need to understand that   the roots of the eqn. X^n +aX+c=0 that  we are mentioning be real roots  because if not as we were known  an arbitrary polynomial of degree n   being always has n roots in C

$$\mathrm{f}\left(\mathrm{X}\right)=\mathrm{X}^{\mathrm{n}} +\mathrm{aX}+\mathrm{c}\Rightarrow\mathrm{f}\:'\left(\mathrm{X}\right)=\mathrm{nX}^{\mathrm{n}−\mathrm{1}} +\mathrm{a}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{i}\right)\mathrm{The}\:\mathrm{n}\:\mathrm{odd}\:\Rightarrow\mathrm{n}=\mathrm{2k}+\mathrm{1} \\ $$$$\left(\mathrm{1}\right)\Leftrightarrow\left(\mathrm{2k}+\mathrm{1}\right)\mathrm{X}^{\mathrm{2k}} =−\mathrm{a}\left(\mathrm{2}\right) \\ $$$$+\mathrm{If}\:\mathrm{a}>\mathrm{0}\:\mathrm{then}\:\left(\mathrm{2}\right)\:\mathrm{has}\:\mathrm{no}\:\mathrm{roots} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{X}\right)\:\mathrm{has}\:\mathrm{one}\:\mathrm{unique}\:\mathrm{root}\:\mathrm{since}\:\mathrm{f}\left(\mathrm{X}\right) \\ $$$$\mathrm{is}\:\mathrm{increasing}\:\mathrm{function} \\ $$$$+\mathrm{If}\:\mathrm{a}=\mathrm{0}\Rightarrow\mathrm{f}\left(\mathrm{X}\right)\:\mathrm{has}\:\mathrm{only}\:\mathrm{root}\:\mathrm{x}=^{\mathrm{2k}+\mathrm{1}} \sqrt{−\mathrm{c}} \\ $$$$+\mathrm{If}\:\mathrm{a}<\mathrm{0}\:\mathrm{then}\:\left(\mathrm{2}\right)\:\mathrm{has}\:\mathrm{two}\:\mathrm{roots} \\ $$$$\mathrm{X}=\pm\:^{\mathrm{2k}} \sqrt{\frac{−\mathrm{a}}{\mathrm{2k}+\mathrm{1}}} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{X}\right)\:\mathrm{has}\:\mathrm{no}\:\mathrm{more}\:\mathrm{three}\:\mathrm{roots} \\ $$$$\left.\mathrm{ii}\right)\mathrm{The}\:\mathrm{n}\:\mathrm{even}\Rightarrow\mathrm{n}=\mathrm{2k}.\mathrm{Then} \\ $$$$\left(\mathrm{1}\right)\Leftrightarrow\mathrm{2kX}^{\mathrm{2k}−\mathrm{1}} =−\mathrm{a}\Leftrightarrow\mathrm{X}=\:^{\mathrm{2k}−\mathrm{1}} \sqrt{\frac{−\mathrm{a}}{\mathrm{2k}}} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{unique}\:\mathrm{root} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{X}\right)\:\mathrm{has}\:\mathrm{no}\:\mathrm{more}\:\mathrm{two}\:\mathrm{roots} \\ $$$$\mathrm{Thus},\mathrm{in}\:\mathrm{all}\:\mathrm{cases}\:\mathrm{we}\:\mathrm{see}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{X}\right)\:\mathrm{has} \\ $$$$\mathrm{no}\:\mathrm{more}\:\mathrm{three}\:\mathrm{solutions}\:\left(\mathrm{q}.\mathrm{e}.\mathrm{d}\right) \\ $$$$\boldsymbol{\mathrm{Note}}:\boldsymbol{\mathrm{Here}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{need}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{understand}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{roots}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{eqn}}.\:\boldsymbol{\mathrm{X}}^{\boldsymbol{\mathrm{n}}} +\boldsymbol{\mathrm{aX}}+\boldsymbol{\mathrm{c}}=\mathrm{0}\:\boldsymbol{\mathrm{that}} \\ $$$$\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{mentioning}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{real}}\:\boldsymbol{\mathrm{roots}} \\ $$$$\boldsymbol{\mathrm{because}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{not}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{were}}\:\boldsymbol{\mathrm{known}} \\ $$$$\mathrm{a}\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{arbitrary}}\:\boldsymbol{\mathrm{polynomial}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{degree}}\:\boldsymbol{\mathrm{n}}\: \\ $$$$\boldsymbol{\mathrm{being}}\:\boldsymbol{\mathrm{always}}\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{roots}}\:\boldsymbol{\mathrm{in}}\:\mathbb{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com