Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 106677 by mohammad17 last updated on 06/Aug/20

Answered by Dwaipayan Shikari last updated on 06/Aug/20

5)∫_1 ^4 (1−u)(√u)du  ∫_1 ^4 (√u)−u^(3/2) du  [(2/3)u^(3/2) −(2/5)u^(5/2) ]_1 ^4 =((16)/3)−(2/3)−((64)/5)+(2/5)=((14)/3)−((62)/5)=((−116)/(15))

$$\left.\mathrm{5}\right)\int_{\mathrm{1}} ^{\mathrm{4}} \left(\mathrm{1}−{u}\right)\sqrt{{u}}{du} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{4}} \sqrt{{u}}−{u}^{\frac{\mathrm{3}}{\mathrm{2}}} {du} \\ $$$$\left[\frac{\mathrm{2}}{\mathrm{3}}{u}^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\mathrm{2}}{\mathrm{5}}{u}^{\frac{\mathrm{5}}{\mathrm{2}}} \right]_{\mathrm{1}} ^{\mathrm{4}} =\frac{\mathrm{16}}{\mathrm{3}}−\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{64}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{5}}=\frac{\mathrm{14}}{\mathrm{3}}−\frac{\mathrm{62}}{\mathrm{5}}=\frac{−\mathrm{116}}{\mathrm{15}} \\ $$

Commented by mohammad17 last updated on 06/Aug/20

sir can you repped again the result

$${sir}\:{can}\:{you}\:{repped}\:{again}\:{the}\:{result} \\ $$

Commented by Her_Majesty last updated on 06/Aug/20

result is −((116)/(15))

$${result}\:{is}\:−\frac{\mathrm{116}}{\mathrm{15}} \\ $$

Commented by mohammad17 last updated on 06/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by Dwaipayan Shikari last updated on 06/Aug/20

4)∫((tanxsecx)/(√(1+secx)))dx  =∫((2tdt)/t)       (1+secx=t^2   ,secxtanx=2t(dt/dx)  =2t+C=2(√(1+secx))+C

$$\left.\mathrm{4}\right)\int\frac{{tanxsecx}}{\sqrt{\mathrm{1}+{secx}}}{dx} \\ $$$$=\int\frac{\mathrm{2}{tdt}}{{t}}\:\:\:\:\:\:\:\left(\mathrm{1}+{secx}={t}^{\mathrm{2}} \:\:,{secxtanx}=\mathrm{2}{t}\frac{{dt}}{{dx}}\right. \\ $$$$=\mathrm{2}{t}+{C}=\mathrm{2}\sqrt{\mathrm{1}+{secx}}+{C} \\ $$

Answered by som(math1967) last updated on 06/Aug/20

4)∫((secxtanx)/(√(1+secx)))dx  let 1+secx=z^2   ∴secxtanxdx=2zdz  ∴∫((2zdz)/z)  =2z+C  =2(√(1+secx)) +C

$$\left.\mathrm{4}\right)\int\frac{\mathrm{secxtanx}}{\sqrt{\mathrm{1}+\mathrm{secx}}}\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{1}+\mathrm{secx}=\mathrm{z}^{\mathrm{2}} \\ $$$$\therefore\mathrm{secxtanxdx}=\mathrm{2zdz} \\ $$$$\therefore\int\frac{\mathrm{2zdz}}{\mathrm{z}} \\ $$$$=\mathrm{2z}+\mathrm{C} \\ $$$$=\mathrm{2}\sqrt{\mathrm{1}+\mathrm{secx}}\:+\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com