Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 10639 by Saham last updated on 21/Feb/17

A manometer wire of lenght 60 cm is maintained under  a tension of value 20V and an a.c is passed through  the wire. If the density of the wire is 4000kgm^(−3)  and it   diamerter is 2mm. Calculate the frequency of the a.c

$$\mathrm{A}\:\mathrm{manometer}\:\mathrm{wire}\:\mathrm{of}\:\mathrm{lenght}\:\mathrm{60}\:\mathrm{cm}\:\mathrm{is}\:\mathrm{maintained}\:\mathrm{under} \\ $$$$\mathrm{a}\:\mathrm{tension}\:\mathrm{of}\:\mathrm{value}\:\mathrm{20V}\:\mathrm{and}\:\mathrm{an}\:\mathrm{a}.\mathrm{c}\:\mathrm{is}\:\mathrm{passed}\:\mathrm{through} \\ $$$$\mathrm{the}\:\mathrm{wire}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{is}\:\mathrm{4000kgm}^{−\mathrm{3}} \:\mathrm{and}\:\mathrm{it}\: \\ $$$$\mathrm{diamerter}\:\mathrm{is}\:\mathrm{2mm}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{frequency}\:\mathrm{of}\:\mathrm{the}\:\mathrm{a}.\mathrm{c} \\ $$

Commented by Saham last updated on 21/Feb/17

please help with this too. God bless you.

$$\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this}\:\mathrm{too}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by mrW1 last updated on 21/Feb/17

a tension of 20 V... what does it mean?  a tension is a force, its unit should be  Newton.

$${a}\:{tension}\:{of}\:\mathrm{20}\:{V}...\:{what}\:{does}\:{it}\:{mean}? \\ $$$${a}\:{tension}\:{is}\:{a}\:{force},\:{its}\:{unit}\:{should}\:{be} \\ $$$${Newton}. \\ $$

Commented by Saham last updated on 21/Feb/17

please use newton sir.

$$\mathrm{please}\:\mathrm{use}\:\mathrm{newton}\:\mathrm{sir}. \\ $$

Answered by mrW1 last updated on 21/Feb/17

f=(1/(2L))(√(T/μ))  μ=((πd^2 ρ)/4)  f − frequency (Hz)  L − length of wire (m)  T − tension in wire (N)  μ − mass of wire (kg/m)  d − diameter of wire (m)  ρ − density of wire (kg/m^3 )  ⇒f=(1/dL)(√(T/(πρ)))=(1/(0.002×0.6))(√((20)/(4000π)))=33 Hz    i′m not sure if this is the right answer  to your question.

$${f}=\frac{\mathrm{1}}{\mathrm{2}{L}}\sqrt{\frac{{T}}{\mu}} \\ $$$$\mu=\frac{\pi{d}^{\mathrm{2}} \rho}{\mathrm{4}} \\ $$$${f}\:−\:{frequency}\:\left({Hz}\right) \\ $$$${L}\:−\:{length}\:{of}\:{wire}\:\left({m}\right) \\ $$$${T}\:−\:{tension}\:{in}\:{wire}\:\left({N}\right) \\ $$$$\mu\:−\:{mass}\:{of}\:{wire}\:\left({kg}/{m}\right) \\ $$$${d}\:−\:{diameter}\:{of}\:{wire}\:\left({m}\right) \\ $$$$\rho\:−\:{density}\:{of}\:{wire}\:\left({kg}/{m}^{\mathrm{3}} \right) \\ $$$$\Rightarrow{f}=\frac{\mathrm{1}}{{dL}}\sqrt{\frac{{T}}{\pi\rho}}=\frac{\mathrm{1}}{\mathrm{0}.\mathrm{002}×\mathrm{0}.\mathrm{6}}\sqrt{\frac{\mathrm{20}}{\mathrm{4000}\pi}}=\mathrm{33}\:{Hz} \\ $$$$ \\ $$$${i}'{m}\:{not}\:{sure}\:{if}\:{this}\:{is}\:{the}\:{right}\:{answer} \\ $$$${to}\:{your}\:{question}. \\ $$

Commented by Saham last updated on 21/Feb/17

Thank you sir. God bless you.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}.\: \\ $$

Commented by Saham last updated on 21/Feb/17

i will confirm

$$\mathrm{i}\:\mathrm{will}\:\mathrm{confirm} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com