Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 106364 by Study last updated on 04/Aug/20

0^i =?????

$$\mathrm{0}^{{i}} =????? \\ $$

Commented by Study last updated on 04/Aug/20

help me

$${help}\:{me} \\ $$

Commented by Dwaipayan Shikari last updated on 04/Aug/20

Undefined

$${Undefined} \\ $$

Answered by mathmax by abdo last updated on 04/Aug/20

u_n =((1/n))^i  ⇒u_n =e^(iln((1/n)))  =cos(ln((1/n)))+isin(ln((1/n)))  =cos(ln(n))−isin(ln(n))   we see that lim_(n→+∞) u_n  dont exist  so 0^i  is indefined form

$$\mathrm{u}_{\mathrm{n}} =\left(\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{i}} \:\Rightarrow\mathrm{u}_{\mathrm{n}} =\mathrm{e}^{\mathrm{iln}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)} \:=\mathrm{cos}\left(\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right)+\mathrm{isin}\left(\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right) \\ $$$$=\mathrm{cos}\left(\mathrm{ln}\left(\mathrm{n}\right)\right)−\mathrm{isin}\left(\mathrm{ln}\left(\mathrm{n}\right)\right)\:\:\:\mathrm{we}\:\mathrm{see}\:\mathrm{that}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{u}_{\mathrm{n}} \:\mathrm{dont}\:\mathrm{exist} \\ $$$$\mathrm{so}\:\mathrm{0}^{\mathrm{i}} \:\mathrm{is}\:\mathrm{indefined}\:\mathrm{form} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com