Question Number 106259 by qwerty111 last updated on 03/Aug/20 | ||
![]() | ||
Commented by qwerty111 last updated on 03/Aug/20 | ||
![]() | ||
$$\sqrt{{xy}}\:=\:? \\ $$ | ||
Answered by john santu last updated on 03/Aug/20 | ||
![]() | ||
$$\mathrm{y}\sqrt{\mathrm{x}}\:=\frac{\mathrm{95}}{\mathrm{8}}−\mathrm{x}\:=\:\frac{\mathrm{95}−\mathrm{8x}}{\mathrm{8}} \\ $$$$\mathrm{y}=\frac{\mathrm{95}−\mathrm{8x}}{\mathrm{8}\sqrt{\mathrm{x}}}\:...\left(\mathrm{1}\right) \\ $$$$\mathrm{x}\sqrt{\mathrm{y}}\:=\:\frac{\mathrm{93}}{\mathrm{8}}−\mathrm{y}=\frac{\mathrm{93}−\mathrm{8y}}{\mathrm{8}} \\ $$$$\mathrm{x}=\frac{\mathrm{93}−\mathrm{8y}}{\mathrm{8}\sqrt{\mathrm{y}}}...\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right):\:\left(\mathrm{2}\right)\rightarrow\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{95}−\mathrm{8x}}{\mathrm{8}\sqrt{\mathrm{x}}}.\frac{\mathrm{8}\sqrt{\mathrm{y}}}{\mathrm{93}−\mathrm{8y}} \\ $$$$\frac{\mathrm{y}}{\mathrm{x}}=\sqrt{\frac{\mathrm{y}}{\mathrm{x}}}\left(\frac{\mathrm{95}−\mathrm{8x}}{\mathrm{93}−\mathrm{8y}}\right)\:\Rightarrow\frac{\mathrm{95}−\mathrm{8x}}{\mathrm{93}−\mathrm{8y}}=\frac{\sqrt{\mathrm{y}}}{\sqrt{\mathrm{x}}} \\ $$$$\frac{\mathrm{y}}{\mathrm{x}}=\left(\frac{\mathrm{95}−\mathrm{8x}}{\mathrm{93}−\mathrm{8y}}\right)^{\mathrm{2}} ... \\ $$$$ \\ $$ | ||
Answered by Her_Majesty last updated on 03/Aug/20 | ||
![]() | ||
$${believing}\:{that}\:{x},\:{y}\:{must}\:{be}\:{rational}\:{numbers} \\ $$$${and}\:{the}\:{denominator}\:{of}\:{both}\:{lhs}\:{must}\:{be}\:\mathrm{8} \\ $$$${I}\:{guess}\:{x}=\frac{{p}^{\mathrm{2}} }{\mathrm{4}}\wedge{y}=\frac{{q}^{\mathrm{2}} }{\mathrm{4}}\:{with}\:{p},\:{q}\:{natural} \\ $$$$\Rightarrow \\ $$$$\begin{cases}{\mathrm{2}{p}^{\mathrm{2}} +{pq}^{\mathrm{2}} =\mathrm{95}\:\Rightarrow\:{q}^{\mathrm{2}} =\frac{\mathrm{95}−\mathrm{2}{p}^{\mathrm{2}} }{{p}}}\\{{p}^{\mathrm{2}} {q}+\mathrm{2}{q}^{\mathrm{2}} =\mathrm{93}\:\Rightarrow\:{p}^{\mathrm{2}} =\frac{\mathrm{93}−\mathrm{2}{q}^{\mathrm{2}} }{{q}}}\end{cases} \\ $$$${now}\:{it}'{s}\:{easy}\:{to}\:{try}\:{because}\:{p}\mid\left(\mathrm{95}−\mathrm{2}{p}^{\mathrm{2}} \right)\:{and} \\ $$$${q}\mid\left(\mathrm{93}−\mathrm{2}{q}^{\mathrm{2}} \right)\:{and}\:{both}\:{square}\:{naturals} \\ $$$$\Rightarrow\:{p}=\mathrm{5}\wedge{q}=\mathrm{3} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{25}}{\mathrm{4}}\wedge{q}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\Rightarrow\:\sqrt{{xy}}=\frac{\mathrm{15}}{\mathrm{4}} \\ $$ | ||
Commented by Her_Majesty last updated on 03/Aug/20 | ||
![]() | ||
$${why}\:{question}\:\mathrm{93}??? \\ $$ | ||
Commented by bemath last updated on 04/Aug/20 | ||
![]() | ||
$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{do}\:\mathrm{find}\:\mathrm{p}=\mathrm{5}\:\mathrm{and}\:\mathrm{q}=\mathrm{3} \\ $$ | ||
Commented by Her_Majesty last updated on 04/Aug/20 | ||
![]() | ||
$${by}\:{trying} \\ $$ | ||