Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 106072 by bemath last updated on 02/Aug/20

Answered by bobhans last updated on 02/Aug/20

lim_(x→π/2)  ((√(2sin^2 x+3sin x+4))/(cot^2 x)) =  set x = (π/2)+h ⇒lim_(h→0)  (3/(cot^2 (h+(π/2)))) =  lim_(h→0)  (3/(tan^2 h)) = lim_(h→0)  ((3h^2 )/(tan^2 h))× lim_(h→0)  (1/h^2 ) = ∞

$$\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{3sin}\:\mathrm{x}+\mathrm{4}}}{\mathrm{cot}\:^{\mathrm{2}} \mathrm{x}}\:= \\ $$$$\mathrm{set}\:\mathrm{x}\:=\:\frac{\pi}{\mathrm{2}}+\mathrm{h}\:\Rightarrow\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3}}{\mathrm{cot}\:^{\mathrm{2}} \left(\mathrm{h}+\frac{\pi}{\mathrm{2}}\right)}\:= \\ $$$$\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{h}}\:=\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3h}^{\mathrm{2}} }{\mathrm{tan}\:^{\mathrm{2}} \mathrm{h}}×\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{h}^{\mathrm{2}} }\:=\:\infty\: \\ $$$$ \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 02/Aug/20

(√(2sin^2 x+3sinx+4))  (√3)≤(√(2sin^2 x+3sinx+4))≤3  (√(2sin^2 x+3sinx+4))≠0  as tan^2 x→∞  the whole function reaches to infinity

$$\sqrt{\mathrm{2}{sin}^{\mathrm{2}} {x}+\mathrm{3}{sinx}+\mathrm{4}} \\ $$$$\sqrt{\mathrm{3}}\leqslant\sqrt{\mathrm{2}{sin}^{\mathrm{2}} {x}+\mathrm{3}{sinx}+\mathrm{4}}\leqslant\mathrm{3} \\ $$$$\sqrt{\mathrm{2}{sin}^{\mathrm{2}} {x}+\mathrm{3}{sinx}+\mathrm{4}}\neq\mathrm{0} \\ $$$${as}\:{tan}^{\mathrm{2}} {x}\rightarrow\infty \\ $$$${the}\:{whole}\:{function}\:{reaches}\:{to}\:{infinity} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com