Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105742 by ZiYangLee last updated on 31/Jul/20

Let a differentiable function f:R→R  satisfies ∣f′(x)∣≤1 for all x∈[0,2] and  f(0)=f(2)=1  Prove that 1≤∫_0 ^2 f(x)dx≤3

$$\mathrm{Let}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{function}\:\mathrm{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{satisfies}\:\mid\mathrm{f}'\left(\mathrm{x}\right)\mid\leqslant\mathrm{1}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\in\left[\mathrm{0},\mathrm{2}\right]\:\mathrm{and} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{f}\left(\mathrm{2}\right)=\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{1}\leqslant\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\leqslant\mathrm{3}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com