Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 104796 by mathocean1 last updated on 23/Jul/20

show that   8cos^4 x−8cos^2 x+1=cos4x.

$${show}\:{that}\: \\ $$$$\mathrm{8}{cos}^{\mathrm{4}} {x}−\mathrm{8}{cos}^{\mathrm{2}} {x}+\mathrm{1}={cos}\mathrm{4}{x}. \\ $$

Commented by kaivan.ahmadi last updated on 23/Jul/20

cos4x=2cos^2 2x−1=2(2cos^2 x−1)^2 −1=  2(4cos^4 x−4cos^2 x+1)−1=  8cos^4 x−8cos^2 x+1

$${cos}\mathrm{4}{x}=\mathrm{2}{cos}^{\mathrm{2}} \mathrm{2}{x}−\mathrm{1}=\mathrm{2}\left(\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}= \\ $$$$\mathrm{2}\left(\mathrm{4}{cos}^{\mathrm{4}} {x}−\mathrm{4}{cos}^{\mathrm{2}} {x}+\mathrm{1}\right)−\mathrm{1}= \\ $$$$\mathrm{8}{cos}^{\mathrm{4}} {x}−\mathrm{8}{cos}^{\mathrm{2}} {x}+\mathrm{1} \\ $$

Commented by mathocean1 last updated on 23/Jul/20

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Answered by a.lgnaoui last updated on 24/Jul/20

8cos^4 x−8cos^2 x+1=2(2cos^2 x−1)^2 −1=2[cos^2  (2x)]−1=cos 4x

$$\mathrm{8cos}\:^{\mathrm{4}} {x}−\mathrm{8cos}\:^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{2}\left(\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}=\mathrm{2}\left[\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{2}{x}\right)\right]−\mathrm{1}=\mathrm{cos}\:\mathrm{4}{x} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com