Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 103881 by bemath last updated on 18/Jul/20

Π_(n=1) ^∞ (((2n−1)(2n+1))/(4n^2 )) ?

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}{n}^{\mathrm{2}} }\:? \\ $$

Answered by bramlex last updated on 18/Jul/20

use Euler infinity product   ((sin x)/x) = Π_(n=1) ^∞ (1−(x^2 /(n^2 π^2 )))  put x = (π/2) ⇒((sin ((π/2)))/(π/2)) = Π_(n=1) ^∞ (1−((π^2 /4)/(n^2 π^2 )))  (2/π) = Π_(n=1) ^∞ (1−(1/(4n^2 )))   (2/π) = Π_(n=1) ^∞ (((4n^2 −1)/(4n^2 )))= Π_(n=1) ^∞ (((2n−1)(2n+1))/(4n^2 )).

$${use}\:{Euler}\:{infinity}\:{product}\: \\ $$$$\frac{\mathrm{sin}\:{x}}{{x}}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right) \\ $$$${put}\:{x}\:=\:\frac{\pi}{\mathrm{2}}\:\Rightarrow\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}\right)}{\frac{\pi}{\mathrm{2}}}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{2}}{\pi}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right)\: \\ $$$$\frac{\mathrm{2}}{\pi}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}{n}^{\mathrm{2}} }. \\ $$

Commented by bemath last updated on 18/Jul/20

cooll

$${cooll} \\ $$

Answered by mathmax by abdo last updated on 18/Jul/20

we have Π_(n=1) ^∞  (((2n−1)(2n+1))/(4n^2 )) =Π_(n=1) ^∞  ((4n^2 −1)/(4n^2 )) =Π_(n=1) ^∞ (1−(1/(4n^2 )))  we know sinz =z Π_(n=1) ^∞ (1−(z^2 /(n^2 π^2 )))  we choose z /(z^2 /π^2 ) =(1/4) ⇒z^2  =(π^2 /4) ⇒  z =(π/2) ⇒sin((π/2)) =(π/2) Π_(n=1) ^∞ (1−(1/(4n^2 ))) ⇒Π_(n=1) ^∞ (1−(1/(4n^2 ))) =(2/π)

$$\mathrm{we}\:\mathrm{have}\:\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(\mathrm{2n}−\mathrm{1}\right)\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{4n}^{\mathrm{2}} }\:=\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{4n}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\:=\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{we}\:\mathrm{know}\:\mathrm{sinz}\:=\mathrm{z}\:\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right)\:\:\mathrm{we}\:\mathrm{choose}\:\mathrm{z}\:/\frac{\mathrm{z}^{\mathrm{2}} }{\pi^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\mathrm{z}^{\mathrm{2}} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow \\ $$$$\mathrm{z}\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{2}}\:\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\right)\:\Rightarrow\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\right)\:=\frac{\mathrm{2}}{\pi} \\ $$

Commented by bemath last updated on 18/Jul/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com