Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 103780 by bobhans last updated on 17/Jul/20

the third, sixth and seventh terms of a  geometric progression (whose common  ratio is neither 0 nor 1 ) are in  arithmetic progression . prove that the  sum of the first three terms is equal to  fourth .

$${the}\:{third},\:{sixth}\:{and}\:{seventh}\:{terms}\:{of}\:{a} \\ $$$${geometric}\:{progression}\:\left({whose}\:{common}\right. \\ $$$$\left.{ratio}\:{is}\:{neither}\:\mathrm{0}\:{nor}\:\mathrm{1}\:\right)\:{are}\:{in} \\ $$$${arithmetic}\:{progression}\:.\:{prove}\:{that}\:{the} \\ $$$${sum}\:{of}\:{the}\:{first}\:{three}\:{terms}\:{is}\:{equal}\:{to} \\ $$$${fourth}\:. \\ $$

Answered by bemath last updated on 17/Jul/20

AP : ar^2  , ar^5 , ar^6  ⇒2ar^5  = ar^2 +ar^6   2r^5  = r^2 +r^6  ⇒ 2r^3  = 1+r^4   r^4 −2r^3 +1 = 0 ; (r−1)(r^3 −r^2 −r−1)=0  r^3 = r^2 +r + 1  now we have T_4 =ar^3   sum of the first three terms is   a+ar+ar^2  = a(1+r+r^2 )   = a(r^3 ) = T_4  . proved ■

$${AP}\::\:{ar}^{\mathrm{2}} \:,\:{ar}^{\mathrm{5}} ,\:{ar}^{\mathrm{6}} \:\Rightarrow\mathrm{2}{ar}^{\mathrm{5}} \:=\:{ar}^{\mathrm{2}} +{ar}^{\mathrm{6}} \\ $$$$\mathrm{2}{r}^{\mathrm{5}} \:=\:{r}^{\mathrm{2}} +{r}^{\mathrm{6}} \:\Rightarrow\:\mathrm{2}{r}^{\mathrm{3}} \:=\:\mathrm{1}+{r}^{\mathrm{4}} \\ $$$${r}^{\mathrm{4}} −\mathrm{2}{r}^{\mathrm{3}} +\mathrm{1}\:=\:\mathrm{0}\:;\:\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{3}} −{r}^{\mathrm{2}} −{r}−\mathrm{1}\right)=\mathrm{0} \\ $$$${r}^{\mathrm{3}} =\:{r}^{\mathrm{2}} +{r}\:+\:\mathrm{1} \\ $$$${now}\:{we}\:{have}\:{T}_{\mathrm{4}} ={ar}^{\mathrm{3}} \\ $$$${sum}\:{of}\:{the}\:{first}\:{three}\:{terms}\:{is}\: \\ $$$${a}+{ar}+{ar}^{\mathrm{2}} \:=\:{a}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)\: \\ $$$$=\:{a}\left({r}^{\mathrm{3}} \right)\:=\:{T}_{\mathrm{4}} \:.\:{proved}\:\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com