Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 10318 by Tawakalitu ayo mi last updated on 03/Feb/17

If 12, x, y and 4 provides a sequence such that  the first 3 of the numbers are in arithmetic  progression. Calculate the   (a) Possible values of x and y  (b) The sum of the A.P  (c) The product of the last 3 numbers of  the G.P

$$\mathrm{If}\:\mathrm{12},\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{4}\:\mathrm{provides}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{3}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{arithmetic} \\ $$$$\mathrm{progression}.\:\mathrm{Calculate}\:\mathrm{the}\: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{A}.\mathrm{P} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{3}\:\mathrm{numbers}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{G}.\mathrm{P} \\ $$

Answered by mrW1 last updated on 05/Feb/17

(a)  the first 3 numbers are in A.P.  ⇒ y−x=x−12     (i)  the last 3 numbers are in G.P.:  ⇒(4/y)=(y/x)     (ii)    from (i) we get:  y=2x−12=2(x−6)    from (ii) we get:  y^2 =4x  4(x^2 −12x+36)=4x  x^2 −13x+36=0  x=((13±(√(13^2 −4×36)))/2)=((13±5)/2)= { (9),(4) :}  y=2(x−6)= { (6),((−4)) :}    the sequence is  12, 9, 6, 4 or  12, 4, −4, 4    (b)  12+9+6=27 or  12+4−4=12    (c)  9×6×4=216 or  4×(−4)×4=−64

$$\left({a}\right) \\ $$$${the}\:{first}\:\mathrm{3}\:{numbers}\:{are}\:{in}\:{A}.{P}. \\ $$$$\Rightarrow\:{y}−{x}={x}−\mathrm{12}\:\:\:\:\:\left({i}\right) \\ $$$${the}\:{last}\:\mathrm{3}\:{numbers}\:{are}\:{in}\:{G}.{P}.: \\ $$$$\Rightarrow\frac{\mathrm{4}}{{y}}=\frac{{y}}{{x}}\:\:\:\:\:\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{we}\:{get}: \\ $$$${y}=\mathrm{2}{x}−\mathrm{12}=\mathrm{2}\left({x}−\mathrm{6}\right) \\ $$$$ \\ $$$${from}\:\left({ii}\right)\:{we}\:{get}: \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x} \\ $$$$\mathrm{4}\left({x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{36}\right)=\mathrm{4}{x} \\ $$$${x}^{\mathrm{2}} −\mathrm{13}{x}+\mathrm{36}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{13}\pm\sqrt{\mathrm{13}^{\mathrm{2}} −\mathrm{4}×\mathrm{36}}}{\mathrm{2}}=\frac{\mathrm{13}\pm\mathrm{5}}{\mathrm{2}}=\begin{cases}{\mathrm{9}}\\{\mathrm{4}}\end{cases} \\ $$$${y}=\mathrm{2}\left({x}−\mathrm{6}\right)=\begin{cases}{\mathrm{6}}\\{−\mathrm{4}}\end{cases} \\ $$$$ \\ $$$${the}\:{sequence}\:{is} \\ $$$$\mathrm{12},\:\mathrm{9},\:\mathrm{6},\:\mathrm{4}\:{or} \\ $$$$\mathrm{12},\:\mathrm{4},\:−\mathrm{4},\:\mathrm{4} \\ $$$$ \\ $$$$\left({b}\right) \\ $$$$\mathrm{12}+\mathrm{9}+\mathrm{6}=\mathrm{27}\:{or} \\ $$$$\mathrm{12}+\mathrm{4}−\mathrm{4}=\mathrm{12} \\ $$$$ \\ $$$$\left({c}\right) \\ $$$$\mathrm{9}×\mathrm{6}×\mathrm{4}=\mathrm{216}\:{or} \\ $$$$\mathrm{4}×\left(−\mathrm{4}\right)×\mathrm{4}=−\mathrm{64} \\ $$

Commented by Tawakalitu ayo mi last updated on 04/Feb/17

I really appreciate your effort sir. God bless  you sir.

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless} \\ $$$$\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com