Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 102298 by Ar Brandon last updated on 08/Jul/20

sinx∙(dy/dx)−ycosx=y^3 sin^2 xcosx

$$\mathrm{sinx}\centerdot\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{ycosx}=\mathrm{y}^{\mathrm{3}} \mathrm{sin}^{\mathrm{2}} \mathrm{xcosx} \\ $$

Answered by john santu last updated on 08/Jul/20

(dy/dx)−ycot x=sin xcos x .y^3   set v = y^(−2)  ⇒(dv/dx) = −2y^(−3)  (dy/dx)  (dy/dx) = −(1/2)y^3  (dv/dx)  ⇔ −(1/2)y^3  (dv/dx)−ycot x=sin xcos x y^3   (dv/dx) +2cot x.v = sin 2x  IF u(x)=e^(∫2cot x dx)  = e^(2ln(sin x)) =sin^2 x  v = ((∫2sin^3 x d(sin x) +C)/(sin^2 x))  ((sin^2 x)/y^2 ) = (1/2)sin^4 x + C   (1/y^2 ) = (1/2)sin^2 x + C. csc^2 x   (JS ⊛)

$$\frac{{dy}}{{dx}}−{y}\mathrm{cot}\:{x}=\mathrm{sin}\:{x}\mathrm{cos}\:{x}\:.{y}^{\mathrm{3}} \\ $$$${set}\:{v}\:=\:{y}^{−\mathrm{2}} \:\Rightarrow\frac{{dv}}{{dx}}\:=\:−\mathrm{2}{y}^{−\mathrm{3}} \:\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{3}} \:\frac{{dv}}{{dx}} \\ $$$$\Leftrightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{3}} \:\frac{{dv}}{{dx}}−{y}\mathrm{cot}\:{x}=\mathrm{sin}\:{x}\mathrm{cos}\:{x}\:{y}^{\mathrm{3}} \\ $$$$\frac{{dv}}{{dx}}\:+\mathrm{2cot}\:{x}.{v}\:=\:\mathrm{sin}\:\mathrm{2}{x} \\ $$$${IF}\:{u}\left({x}\right)={e}^{\int\mathrm{2cot}\:{x}\:{dx}} \:=\:{e}^{\mathrm{2ln}\left(\mathrm{sin}\:\mathrm{x}\right)} =\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$${v}\:=\:\frac{\int\mathrm{2sin}\:^{\mathrm{3}} {x}\:{d}\left(\mathrm{sin}\:{x}\right)\:+{C}}{\mathrm{sin}\:^{\mathrm{2}} {x}} \\ $$$$\frac{\mathrm{sin}\:^{\mathrm{2}} {x}}{{y}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{4}} {x}\:+\:{C}\: \\ $$$$\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{2}} {x}\:+\:{C}.\:\mathrm{csc}^{\mathrm{2}} {x}\: \\ $$$$\left({JS}\:\circledast\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com