Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 102296 by bemath last updated on 08/Jul/20

lim_(t→∞)  (1/t) ∫_0 ^t  sin (αx) cos (βx) dx

$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{t}}\:\underset{\mathrm{0}} {\overset{{t}} {\int}}\:\mathrm{sin}\:\left(\alpha{x}\right)\:\mathrm{cos}\:\left(\beta{x}\right)\:{dx} \\ $$

Answered by john santu last updated on 08/Jul/20

assume α,β > 0  lim_(t→∞) (1/t)∫_0 ^t sin (αx)cos (βx)dx  lim_(t→∞) (1/(2t))∫_0 ^t  sin (α+β)x+sin (α−β)x dx  lim_(t→∞)  −(1/(2t)) [((cos (α+β)x)/(α+β)) + ((cos (α−β)x)/(α−β)) ]_0 ^t   lim_(t→∞) ((cos (α+β)t)/(−2(α+β)t)) + lim_(t→∞) ((cos (α−β)t)/(−2(α−β)t)) = 0  (JS ⊛)

$${assume}\:\alpha,\beta\:>\:\mathrm{0} \\ $$$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{t}}\int_{\mathrm{0}} ^{{t}} \mathrm{sin}\:\left(\alpha{x}\right)\mathrm{cos}\:\left(\beta{x}\right){dx} \\ $$$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}{t}}\int_{\mathrm{0}} ^{{t}} \:\mathrm{sin}\:\left(\alpha+\beta\right){x}+\mathrm{sin}\:\left(\alpha−\beta\right){x}\:{dx} \\ $$$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:−\frac{\mathrm{1}}{\mathrm{2}{t}}\:\left[\frac{\mathrm{cos}\:\left(\alpha+\beta\right){x}}{\alpha+\beta}\:+\:\frac{\mathrm{cos}\:\left(\alpha−\beta\right){x}}{\alpha−\beta}\:\right]_{\mathrm{0}} ^{{t}} \\ $$$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{cos}\:\left(\alpha+\beta\right){t}}{−\mathrm{2}\left(\alpha+\beta\right){t}}\:+\:\underset{{t}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{cos}\:\left(\alpha−\beta\right){t}}{−\mathrm{2}\left(\alpha−\beta\right){t}}\:=\:\mathrm{0} \\ $$$$\left({JS}\:\circledast\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com