Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 102178 by dw last updated on 07/Jul/20

Answered by 1549442205 last updated on 07/Jul/20

Putting x=tanα,y=tanβ we have  (√(1+x^2 ))=(√(1+tan^2 α))=(1/(cosα)),(√(1+y^2 ))=(1/(cosβ))  x(√(1+y^2 ))+y(√(1+x^2 ))=((tamα)/(cosβ))+((tanβ)/(cosα))=((sinα+sinβ)/(cosαcosβ)).Hence,  LHS=(1/(cosαcosβ))(√(1+(((sinα+sinβ)/(cosαcosβ)))^2 ))+(1/(cosαcosβ))(√(1+(((sinα−sinβ)/(cosαcosβ)))^2 ))  =(1/(cosαcosβ))(√(cos^2 αcos^2 β+(sinα+sinβ)^2 ))+(1/(cosαcosβ))(√(cos^2 αcos^2 β+(sinα−sinβ)^2 ))  we have :cos^2 αcos^2 β=(1−sin^2 α)(1−sin^2 β)  =1+sin^2 αsin^2 β−sin^2 α−sin^2 β,so  =(√(cos^2 αcos^2 β+(sinα+sinβ)^2  ))=(√(1+sin^2 αsin^2 β+2sinαsinβ))  =(√((sinαsinβ+1)^2 )) =1+sinαsinβ  Similarly,=(√(cos^2 αcos^2 β+(sinα−sinβ)^2 ))=1−sinαsinβ  Therefore,LHS=(1/(cosαcosβ))[(1+sinαsinβ)−(1−sinαsinβ)]  =((2sinαsinβ)/(cosαcosβ))=2tanαtanβ=2xy  Thus,LHS=RHS(q.e.d)

$$\mathrm{Putting}\:\mathrm{x}=\mathrm{tan}\alpha,\mathrm{y}=\mathrm{tan}\beta\:\mathrm{we}\:\mathrm{have} \\ $$$$\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \alpha}=\frac{\mathrm{1}}{\mathrm{cos}\alpha},\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{cos}\beta} \\ $$$$\mathrm{x}\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }+\mathrm{y}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{tam}\alpha}{\mathrm{cos}\beta}+\frac{\mathrm{tan}\beta}{\mathrm{cos}\alpha}=\frac{\mathrm{sin}\alpha+\mathrm{sin}\beta}{\mathrm{cos}\alpha\mathrm{cos}\beta}.\mathrm{Hence}, \\ $$$$\mathrm{LHS}=\frac{\mathrm{1}}{\mathrm{cos}\alpha\mathrm{cos}\beta}\sqrt{\mathrm{1}+\left(\frac{\mathrm{sin}\alpha+\mathrm{sin}\beta}{\mathrm{cos}\alpha\mathrm{cos}\beta}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{cos}\alpha\mathrm{cos}\beta}\sqrt{\mathrm{1}+\left(\frac{\mathrm{sin}\alpha−\mathrm{sin}\beta}{\mathrm{cos}\alpha\mathrm{cos}\beta}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{cos}\alpha\mathrm{cos}\beta}\sqrt{\mathrm{cos}^{\mathrm{2}} \alpha\mathrm{cos}^{\mathrm{2}} \beta+\left(\mathrm{sin}\alpha+\mathrm{sin}\beta\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{cos}\alpha\mathrm{cos}\beta}\sqrt{\mathrm{cos}^{\mathrm{2}} \alpha\mathrm{cos}^{\mathrm{2}} \beta+\left(\mathrm{sin}\alpha−\mathrm{sin}\beta\right)^{\mathrm{2}} } \\ $$$$\mathrm{we}\:\mathrm{have}\::\mathrm{cos}^{\mathrm{2}} \alpha\mathrm{cos}^{\mathrm{2}} \beta=\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \alpha\right)\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \beta\right) \\ $$$$=\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \alpha\mathrm{sin}^{\mathrm{2}} \beta−\mathrm{sin}^{\mathrm{2}} \alpha−\mathrm{sin}^{\mathrm{2}} \beta,\mathrm{so} \\ $$$$=\sqrt{\mathrm{cos}^{\mathrm{2}} \alpha\mathrm{cos}^{\mathrm{2}} \beta+\left(\mathrm{sin}\alpha+\mathrm{sin}\beta\right)^{\mathrm{2}} \:}=\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \alpha\mathrm{sin}^{\mathrm{2}} \beta+\mathrm{2sin}\alpha\mathrm{sin}\beta} \\ $$$$=\sqrt{\left(\mathrm{sin}\alpha\mathrm{sin}\beta+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{1}+\mathrm{sin}\alpha\mathrm{sin}\beta \\ $$$$\mathrm{Similarly},=\sqrt{\mathrm{cos}^{\mathrm{2}} \alpha\mathrm{cos}^{\mathrm{2}} \beta+\left(\mathrm{sin}\alpha−\mathrm{sin}\beta\right)^{\mathrm{2}} }=\mathrm{1}−\mathrm{sin}\alpha\mathrm{sin}\beta \\ $$$$\mathrm{Therefore},\mathrm{LHS}=\frac{\mathrm{1}}{\mathrm{cos}\alpha\mathrm{cos}\beta}\left[\left(\mathrm{1}+\mathrm{sin}\alpha\mathrm{sin}\beta\right)−\left(\mathrm{1}−\mathrm{sin}\alpha\mathrm{sin}\beta\right)\right] \\ $$$$=\frac{\mathrm{2sin}\alpha\mathrm{sin}\beta}{\mathrm{cos}\alpha\mathrm{cos}\beta}=\mathrm{2tan}\alpha\mathrm{tan}\beta=\mathrm{2xy} \\ $$$$\boldsymbol{\mathrm{Thus}},\boldsymbol{\mathrm{LHS}}=\boldsymbol{\mathrm{RHS}}\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$$$ \\ $$

Commented by dw last updated on 07/Jul/20

Thank you! Your solution is very good.

$${Thank}\:{you}!\:{Your}\:{solution}\:{is}\:{very}\:{good}. \\ $$

Commented by dw last updated on 16/Jul/20

but I did not understand !    (1/(cosαcosβ))[(1+sinαsinβ)−(1−sinαsinβ)]=    (1/(cosαcosβ))[(1+sinαsinβ)+(1−sinαsinβ)

$${but}\:{I}\:{did}\:{not}\:{understand}\:! \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{cos}\alpha{cos}\beta}\left[\left(\mathrm{1}+{sin}\alpha{sin}\beta\right)−\left(\mathrm{1}−{sin}\alpha{sin}\beta\right)\right]= \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{cos}\alpha{cos}\beta}\left[\left(\mathrm{1}+{sin}\alpha{sin}\beta\right)+\left(\mathrm{1}−{sin}\alpha{sin}\beta\right)\right. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com