Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 101891 by bobhans last updated on 05/Jul/20

if x a integer number , when divided 8  has remainder 5 and divided 5 has remainder  2. find x

$${if}\:{x}\:{a}\:{integer}\:{number}\:,\:{when}\:{divided}\:\mathrm{8} \\ $$$${has}\:{remainder}\:\mathrm{5}\:{and}\:{divided}\:\mathrm{5}\:{has}\:{remainder} \\ $$$$\mathrm{2}.\:{find}\:{x} \\ $$

Answered by Rasheed.Sindhi last updated on 05/Jul/20

8−5=5−2=3  LCM(8,5)−3=40−3=37★

$$\mathrm{8}−\mathrm{5}=\mathrm{5}−\mathrm{2}=\mathrm{3} \\ $$$$\mathrm{LCM}\left(\mathrm{8},\mathrm{5}\right)−\mathrm{3}=\mathrm{40}−\mathrm{3}=\mathrm{37}\bigstar \\ $$

Commented by Rasheed.Sindhi last updated on 05/Jul/20

This approach works when the  difference of each divisor and  its remainder is same.  (lcm of divisors)−(diff. of divisor and remainder)

$${This}\:{approach}\:{works}\:{when}\:{the} \\ $$$${difference}\:{of}\:{each}\:{divisor}\:{and} \\ $$$${its}\:{remainder}\:{is}\:{same}. \\ $$$$\left(\mathrm{lcm}\:\mathrm{of}\:\mathrm{divisors}\right)−\left(\mathrm{diff}.\:\mathrm{of}\:\mathrm{divisor}\:\mathrm{and}\:\mathrm{remainder}\right) \\ $$

Commented by bemath last updated on 06/Jul/20

great sir

$${great}\:{sir} \\ $$

Answered by john santu last updated on 05/Jul/20

⇔x = 8p+5 ...(×5)  ⇔x = 5q+2... (×8)  ___________ −  −3x = 40(p−q)+9  3x = 40(q−p)−9  x = ((40(q−p))/3) −3   q−p must be 3k , k∈Z  (1)q−p=3 ⇔x = 37  (2)q−p=6 ⇔x= 77  (3)q−p=9⇔x=117  (4)q−p=12⇔x=157  and so on (JS ⊛)

$$\Leftrightarrow{x}\:=\:\mathrm{8}{p}+\mathrm{5}\:...\left(×\mathrm{5}\right) \\ $$$$\Leftrightarrow{x}\:=\:\mathrm{5}{q}+\mathrm{2}...\:\left(×\mathrm{8}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\:− \\ $$$$−\mathrm{3}{x}\:=\:\mathrm{40}\left({p}−{q}\right)+\mathrm{9} \\ $$$$\mathrm{3}{x}\:=\:\mathrm{40}\left({q}−{p}\right)−\mathrm{9} \\ $$$${x}\:=\:\frac{\mathrm{40}\left({q}−{p}\right)}{\mathrm{3}}\:−\mathrm{3}\: \\ $$$${q}−{p}\:{must}\:{be}\:\mathrm{3}{k}\:,\:{k}\in\mathbb{Z} \\ $$$$\left(\mathrm{1}\right){q}−{p}=\mathrm{3}\:\Leftrightarrow{x}\:=\:\mathrm{37} \\ $$$$\left(\mathrm{2}\right){q}−{p}=\mathrm{6}\:\Leftrightarrow{x}=\:\mathrm{77} \\ $$$$\left(\mathrm{3}\right){q}−{p}=\mathrm{9}\Leftrightarrow{x}=\mathrm{117} \\ $$$$\left(\mathrm{4}\right){q}−{p}=\mathrm{12}\Leftrightarrow{x}=\mathrm{157} \\ $$$${and}\:{so}\:{on}\:\left({JS}\:\circledast\right)\: \\ $$

Answered by floor(10²Eta[1]) last updated on 22/Jul/20

x≡5(mod 8)⇒x=5+8y, y∈Z  x≡2(mod 5)⇒5+8y≡2(mod 5)  ⇒8y≡2(mod 5), gcd(8,5)=1  ⇒4y≡1≡−4(mod 5), gcd(4, −4)=4∤5  ⇒y≡−1≡4(mod 5)⇒y=5z+4, z∈Z  x=5+8(5z+4)=40z+37  x∈(37, 77,117, ...)∪(−3, −43,...)

$$\mathrm{x}\equiv\mathrm{5}\left(\mathrm{mod}\:\mathrm{8}\right)\Rightarrow\mathrm{x}=\mathrm{5}+\mathrm{8y},\:\mathrm{y}\in\mathbb{Z} \\ $$$$\mathrm{x}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{5}+\mathrm{8y}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\Rightarrow\mathrm{8y}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right),\:\mathrm{gcd}\left(\mathrm{8},\mathrm{5}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{4y}\equiv\mathrm{1}\equiv−\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right),\:\mathrm{gcd}\left(\mathrm{4},\:−\mathrm{4}\right)=\mathrm{4}\nmid\mathrm{5} \\ $$$$\Rightarrow\mathrm{y}\equiv−\mathrm{1}\equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{y}=\mathrm{5z}+\mathrm{4},\:\mathrm{z}\in\mathbb{Z} \\ $$$$\mathrm{x}=\mathrm{5}+\mathrm{8}\left(\mathrm{5z}+\mathrm{4}\right)=\mathrm{40z}+\mathrm{37} \\ $$$$\mathrm{x}\in\left(\mathrm{37},\:\mathrm{77},\mathrm{117},\:...\right)\cup\left(−\mathrm{3},\:−\mathrm{43},...\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com